Forgot password
 Register account
View 1280|Reply 0

[不等式] 来自人教群的简单三元不等式

[Copy link]

681

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2021-1-21 14:40 |Read mode
鄂D山羊无角(7048*****) 2021/1/21 9:33:28
请问:x,y,z>0,则
QQ图片20210121143654.png
怎么证,好长好吓人关键是不知道如何用均值
记 `A=\sum x^2y`, `B=\sum xy^2`, `C=3xyz`, `D=\sum x^2(y+z)-3xyz`,注意到 `A+B=C+D`,故
\begin{align*}
AB\geqslant CD&\iff(A+B)^2-(A-B)^2\geqslant(C+D)^2-(C-D)^2\\
&\iff(C-D)^2\geqslant(A-B)^2,
\end{align*}左边配方右边分解,不等式变成
\[\left( \sum x(y-z)^2 \right)^2\geqslant\prod(y-z)^2,\]不妨设 `z=\min\{x,y,z\}`,令 `x=z+t`, `y=z+u`, `t`, `u\geqslant0`,上式即
\[\bigl( (z+t)u^2+(z+u)t^2+z(t-u)^2 \bigr)^2\geqslant t^2u^2(t-u)^2,\]显然有
\[\LHS\geqslant(tu^2+ut^2)^2=t^2u^2(t+u)^2\geqslant\RHS.\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 20:51 GMT+8

Powered by Discuz!

Processed in 0.016590 second(s), 24 queries

× Quick Reply To Top Edit