Forgot password
 Register account
View 1346|Reply 4

[几何] 看错焦点,答案居然一样

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2021-1-25 09:00 |Read mode
原题:P是椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$上一点,$F_1,F_2$是椭圆左右焦点,$\abs{PF_2}=2$,M是$∠F_1PF_2$的平分线上的一点,
且$F_2M⊥MP$,则$\abs{OM}=$_____2_____

看错为:
P是椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$上一点,$F_1,F_2$是椭圆左右焦点,$\abs{PF_2}=2$,M是$∠F_1PF_2$的平分线上的一点,
且$F_1M⊥MP$,则$\abs{OM}=$_____2_____

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-1-25 10:30
回复 1# realnumber

题目中多是前者,后者,我是也是才见。

的确是这样,角分线对称,截掉小三角形后,是一个等腰梯形,于是任何时候结果一样。

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2021-1-26 12:29
回复 2# isee


    en,解法一样

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-1-26 15:42
QQ截图20210126154449.png
如图,由于 `O` 是 `F_1F_2` 中点,故 `H` 也是 `M_1M_2` 中点,因此 `OM_1=OM_2`,无论那直线是什么线都等。

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2021-1-27 10:04
回复 4# kuing
明白了,这样更好看

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.015307 seconds, 25 queries