Forgot password?
 Register account
View 1169|Reply 1

[函数] 一个条件代数等式

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2021-1-27 16:35 |Read mode
\begin{align*}
\frac{1-\frac{X+Y}{1+XY}}{1+\frac{X+Y}{1+XY}}=\left(\frac{1-\frac{X\sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}}{1+\frac{X\sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}}\right)^2
\end{align*}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-1-27 20:13
Last edited by hbghlyj 2021-1-27 20:29回复 1# 青青子衿
令$X=\tanh x,Y=\tanh Y$,左边化为$e^{2(x+y)}$,
\[\frac{X \sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}=\frac{\tanh x \operatorname{sech}y+ \tanh y\operatorname{sech}x}{\operatorname{sech}x+\operatorname{sech}y}=\tanh \left(\frac{x+y}{2}\right)\]右边化为$(e^{x+y})^2$

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit