Forgot password
 Register account
View 1181|Reply 1

[函数] 一个条件代数等式

[Copy link]

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2021-1-27 16:35 |Read mode
\begin{align*}
\frac{1-\frac{X+Y}{1+XY}}{1+\frac{X+Y}{1+XY}}=\left(\frac{1-\frac{X\sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}}{1+\frac{X\sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}}\right)^2
\end{align*}

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2021-1-27 20:13
Last edited by hbghlyj 2021-1-27 20:29回复 1# 青青子衿
令$X=\tanh x,Y=\tanh Y$,左边化为$e^{2(x+y)}$,
\[\frac{X \sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}=\frac{\tanh x \operatorname{sech}y+ \tanh y\operatorname{sech}x}{\operatorname{sech}x+\operatorname{sech}y}=\tanh \left(\frac{x+y}{2}\right)\]右边化为$(e^{x+y})^2$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 21:05 GMT+8

Powered by Discuz!

Processed in 0.013229 seconds, 23 queries