|
Last edited by hbghlyj 2021-1-27 20:29回复 1# 青青子衿
令$X=\tanh x,Y=\tanh Y$,左边化为$e^{2(x+y)}$,
\[\frac{X \sqrt{1-Y^2}+Y\sqrt{1-X^2}}{\sqrt{1-X^2}+\sqrt{1-Y^2}}=\frac{\tanh x \operatorname{sech}y+ \tanh y\operatorname{sech}x}{\operatorname{sech}x+\operatorname{sech}y}=\tanh \left(\frac{x+y}{2}\right)\]右边化为$(e^{x+y})^2$ |
|