Forgot password?
 Register account
View 1497|Reply 8

[几何] 翻折后求面积

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2021-1-28 23:45 |Read mode
请教各位,谢谢啦。。。 1.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-1-29 07:12
回复 1# lrh2006


提示  FG=GB =x,9+(5-x)^2=(2+x)^2

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2021-1-29 08:33
回复 2# isee


    嗯嗯,FG会求,但是EH求不出来,面积不会求啊,请再给点提示,谢谢!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-1-29 09:22
回复 3# lrh2006

不用算,变成三角形BHC与三角形EGC的差。

如果硬是要求,作平行线,构造相似三角形即可(当然,Menelaus定理亦可秒)

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2021-1-29 10:53
回复 4# isee


    对啊,就是CH不知道,三角形BHC面积不会求

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2021-1-29 14:29
回复 4# isee


   求三角形BHC与三角形EGC的面积差,不用分别计算面积吗?求指点,谢谢!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-1-29 15:34
Last edited by isee 2021-1-29 15:46回复 6# lrh2006


  抱歉误导你了需要算长度。就是作平行线……后半句~

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-1-29 15:39
Last edited by isee 2021-1-29 16:16回复 1# lrh2006


    作平行线的方式很多,比如,过点$G$作$GM$平行于$CE$交$BH$于$M$,则$$\frac {EH}{GM}=\frac{EF}{FG},\frac{GM}{CH}=\frac{BG}{CB}$$
两比例式相乘消去$GM$, 代入数据即可。

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2021-1-30 12:05
回复 8# isee

嗯嗯,明白了,非常感谢!
还可以通过证明△ABG与△BCH全等,得到CH=BG

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit