Forgot password?
 Register account
View 1346|Reply 2

[不等式] 一道初中多元不等式

[Copy link]

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

wzyl1860 Posted 2021-2-1 11:23 |Read mode
Last edited by hbghlyj 2025-5-10 17:55若实数 $a, b, c, d, e$ 满足:$a \leqslant b \leqslant c \leqslant d \leqslant e, a+b+c+d+e=0, a^2+b^2+c^2+d^2+e^2=500$,求 $|a e|$ 的最小值.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-2-1 16:39
一开始以为是坑题,想了一大堆,后来发现还真是初中生能解的……

由顺序条件有
\[(b-a)(b-e)\leqslant0\iff b^2-b(a+e)+ae\leqslant0,\]对 `c`, `d` 同理,三式相加得
\[b^2+c^2+d^2-(b+c+d)(a+e)+3ae\leqslant0,\]即
\[500-a^2-e^2+(a+e)^2+3ae\leqslant0,\]刚好就没了平方项,剩下就是 `ae\leqslant-100`,所以 `\abs{ae}\geqslant100`。

取等条件就是 `b`, `c`, `d\in\{a,e\}`,所以不止一种取等,如 `a=-20` 且 `b=c=d=e=5`,或者 `a=b=-5\sqrt6` 且 `c=d=e=10\sqrt6/3`,以及它们的镜像。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-2-1 16:48
回复 2# kuing


初中题也是竞赛类,肯定。

欣赏!

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit