Forgot password?
 Register account
View 1344|Reply 3

[不等式] 证明总有三个实根

[Copy link]

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

hbghlyj Posted 2021-2-3 15:32 |Read mode
Last edited by hbghlyj 2022-3-27 07:30$a,b,c,x,y,z\in\mathbb{R}$,证明关于t的方程$\frac{x^2}{a^2+t}+\frac{y^2}{b^2+t}+\frac{z^2}{c^2+t}=1$总有三个实根.


来源:confocal ellipsoidal coordinates(共焦椭球坐标)

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2021-2-6 11:18
Last edited by realnumber 2021-2-6 11:41不妨设$a^2\ge b^2 \ge c^2 \ge 0$-----这里等号应该去掉吧?
方程化为$f(t)=(a^2+t)(b^2+t)(c^2+t)-x^2(b^2+t)(c^2+t)-y^2(a^2+t)(c^2+t)-z^2(a^2+t)(b^2+t)=0$
$f(-a)=-x^2(b^2-a^2)(c^2-a^2)\le 0,f(-b^2)\ge 0,f(-c^2)\le0$,---这里也加上x,y,z不等于0?
又f(+无穷)>0,f(-无穷)<0,由零点存在定理以及代数基本定理可以确定有且只有三个实数根.

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

 Author| hbghlyj Posted 2022-3-27 15:30
Screenshot 2022-03-27 082803.png

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

 Author| hbghlyj Posted 2022-3-27 15:33
回复 2# realnumber
一个笔误:应该是$f(-a^2)$不是$f(-a)$吧

Mobile version|Discuz Math Forum

2025-6-1 19:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit