|
湖州高三期末试卷里面有个数列题,大意是:等差数列前$n$项和$S_n>0$恒成立,然后证明不存在正整数$k\geqslant 2$,使得$\ln S_k,\ln S_{k+1},\ln S_{k+2}$成等比.答案给的方法是,$\ln^2 S_{k+1}=\ln S_k \ln S_{k+2} \leqslant \ln^2 \sqrt{S_k S_{k+2}}\implies S_{k+1}^2\leqslant S_k S_{k+2}$从而推出矛盾,但是我发现这里又一个问题,虽然$S_n>0$,但是$\ln S_k$却有可能是负数,因此最后一个$\implies$不成立,比如$S_n=\dfrac{n^2}{1000}$这种情况,毛估估是不成立的,但是感觉找不到简洁的说明方法,请问一下有无合适的写法 |
|