Forgot password?
 Register account
View 1689|Reply 1

[几何] 四点中每个点在过其余三点的圆内部

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-2-22 11:27 |Read mode
不存在四个点,每个点在过其余三点的圆内部.
不存在四个点,每个点在过其余三点的圆外部.
不存在四个点A,B,C,D,点A在过B,C,D的圆外部,而且,除A外,每个点在过其余三点的圆内部.
-----------
验证:
  1. f[a_List, b_List, c_List,d_List] = Tally[Table[
  2.   g[{RandomReal[], RandomReal[]}, {RandomReal[],
  3.     RandomReal[]}, {RandomReal[], RandomReal[]}, {RandomReal[],
  4.     RandomReal[]}], 20000]]((Last[b] - Last[c]) (-First[a]^2 First[d] -
  5.        First[d] (Last[a] - Last[b]) (Last[a] - Last[c]) +
  6.        First[a] (First[
  7.            d]^2 + (Last[b] - Last[d]) (Last[c] - Last[d]))) +
  8.     First[c] (First[
  9.          d]^2 (Last[a] -
  10.           Last[b]) + (First[
  11.            a]^2 + (Last[a] - Last[b]) (Last[a] - Last[d])) (Last[b] -
  12.           Last[d])) +
  13.     First[b]^2 (First[d] (Last[a] - Last[c]) +
  14.        First[a] (Last[c] - Last[d]) + First[c] (-Last[a] + Last[d])) +
  15.      First[c]^2 (First[d] (-Last[a] + Last[b]) +
  16.        First[a] (-Last[b] + Last[d])) +
  17.     First[b] (-(Last[a] - Last[c]) (First[
  18.            d]^2 + (Last[a] - Last[d]) (Last[c] - Last[d])) +
  19.        First[c]^2 (Last[a] - Last[d]) +
  20.        First[a]^2 (-Last[c] + Last[d])))/(First[
  21.       c] (Last[a] - Last[b]) + First[a] (Last[b] - Last[c]) +
  22.     First[b] (-Last[a] + Last[c]));
  23. g[a_List, b_List, c_List, d_List] = {f[b, c, d, a] > 0,f[a, c, d, b] > 0, f[a, b, d, c] > 0, f[a, b, c, d] > 0};
  24. Tally[Table[
  25.   g[{RandomReal[], RandomReal[]}, {RandomReal[],
  26.     RandomReal[]}, {RandomReal[], RandomReal[]}, {RandomReal[],
  27.     RandomReal[]}], 20000]]
Copy the Code
输出:
{{{False, False, True, True},2316},
{{False, True, True, False},2359},
{{False, True, True, True},1498},
{{False, True, False, True},2319},
{{True, False, True, False},2258},
{{True, True, True, False},1524},
{{True, True, False, True},1519},
{{True, False, True, True},1533},
{{True, True, False, False},2340},
{{True, False, False, True},2334}}
涵盖了10种情况,用0和1写出来是:
{{0,0,1,1},{0,1,1,0},{0,1,1,1},{0,1,0,1},{1,0,1,0},{1,1,1,0},{1,1,0,1},{1,0,1,1},{1,1,0,0},{1,0,0,1}}
也就是说,有2个1,2个0或者3个1,1个0的全部情况.分别画图说明如下:
2.png 2.png
我们还有6个情况,它们都是不可能的:
4个1:{1,1,1,1}
1个1,3个0:{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}
4个0:{0,0,0,0}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-2-22 11:35
1#的证明很简单.
这四个点,要么组成凸四边形,要么其中一个点在另外三个的三角形内部.
分别对应,2个1,2个0或者3个1,1个0的全部情况.
那么,再搞一下五个点.
过四个点能做一条抛物线.
重新做一遍

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit