Last edited by hbghlyj 2021-2-25 00:17Does there exist an infinite sequence $a_1,a_2,…,a_n,…$ of real numbers which is bounded, not periodic, and satisfies the recursion $a_{n+1}=a_na_{n-1}+1$?
来源
MSE 1
Aops 1
Aops 2
komal 2018 A. 732.
以上链接中都没有答案.
一些思路:
这道题的结论应该是否定的.也就是说,它要么循环,要么无界.
如果$a_n$有极限L,则$L=L^2+1$,这个方程无实根,只剩下一种情况没有排除:数列至少有两个聚点.
据说,容易证明$a_1a_2<0$,但不知如何证明
容易找到循环的例子.$a_0=-1,a_1=2$时,$\{a_0,a_1,\cdots\}=\{-1,2,-1,\dot{-1},\dot{2},\dot{-1}\}$;$a_0=a_1=-1$时,$\{a_0,a_1,\cdots\}=\{-1,-1,2,\dot{-1},\dot{-1},\dot{2}\}$(加点的是循环节).
还有一个关于类似的递推式的问题,见MSE 2,这个只是一个简单的循环数列而已. |