Forgot password?
 Register account
View 1536|Reply 1

[几何] 含参数的二元二次式表示两条直线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-1 02:26 |Read mode
$f=A^2 B x^2+2 A^2 B x y-2 A^2 B x+A^2 B y^2-2 A^2 B y+A^2 B-A^2 x^2+2 A^2 x-A^2 y^2-A^2-2 A B x y+2 A B x-2 A B y^2+4 A B y-2 A B-2 A x+A y^2+2 A+B y^2-2 B y+B-1$
$\begin{vmatrix}
A^2 B-A^2-2 A B+A+B & A^2 B-A B & -A^2 B+2 A B-B \\
A^2 B-A B & A^2 B-A^2 & -A^2 B+A^2+A B-A \\
-A^2 B+2 A B-B & -A^2 B+A^2+A B-A & A^2 B-A^2-2 A B+2 A+B-1 \\
\end{vmatrix}=0$,所以f总是表示两条直线.
能否写出f的分解式?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2021-3-1 09:59
Last edited by 青青子衿 2021-3-1 10:48回复 1# hbghlyj
可以写成广义二次型的形式
\begin{align*}
\begin{bmatrix}
x&y&1
\end{bmatrix}\begin{bmatrix}
A^{2}(B-1)&AB(A-1)&-A(A-1)(B-1)\\
AB(A-1)&(A-1)(AB-A-B)&-B(A-1)^{2}\\
-A(A-1)(B-1)&-B(A-1)^{2}&(A-1)^{2}(B-1)
\end{bmatrix}
\begin{bmatrix}
x\\
y\\
1
\end{bmatrix}
\end{align*}

两直线的交点为$\left(\frac{A-1}{A},0\right)$
利用二次曲线渐近方向的方法可求得两条相交直线为
\begin{align*}
y=\frac{-AB(A-1)-A\sqrt{(A-1)(2AB-A-B)\,\,}}{(A-1)(AB-A-B)}\left(x-\frac{A-1}{A}\right)\\
y=\frac{-AB(A-1)+A\sqrt{(A-1)(2AB-A-B)\,\,}}{(A-1)(AB-A-B)}\left(x-\frac{A-1}{A}\right)
\end{align*}

另外,好奇这道题的背景是?

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit