|
Last edited by hbghlyj 2021-3-3 22:28$c\geq b\geq a>0,4 a^2 b^2 c^2+a^4+b^4+c^4=2 a^2 b^2+2 b^2 c^2+2c^2a^2,$求证(1)$c\sin\frac\pi3\ge ab$;(2)$b\ge ac$.
取等条件是(1)$a=b=c=\sin\frac\pi3$;(2)$a=b=\sin\frac\pi4,c=\sin\frac\pi2$.
证:$4 a^2 b^2 c^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)>0$,所以a,b,c能构成三角形.
由已知等式得$R=\frac12$,于是$a=\sin A,b=\sin B,c=\sin C$.
(1)A是最小角,所以$a=\sin A\le\sin\frac\pi3$,又$c\ge b$,所以$c\sin\frac\pi3\ge ab$;
(2)$b\ge a\ge a\sin C= ac$. |
|