Forgot password?
 Register account
View 1821|Reply 5

[几何] 一个向量问题求证

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2021-3-7 15:48 |Read mode
4MZ~{WGZ[6B]QPURXDJN9~6.png

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2021-3-7 16:16
3XA6CR]7$[T2RB1O]@C8V.jpg
此题我的思想是取BC,EF的中点G,H,
2GH向量=BE向量+CF向量,于是
AD向量+2GH向量=0向量,但不知道怎么说明
M一定是重心,虽然根据比值猜猜就是重心

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-3-7 18:11
回复 1# hjfmhh

那猜测显然不成立,就比如 OA = (1, 0), OB = (0, 1), OC = (1, 1), OH = (1, -1),设 OH = xOA+yOB+zOC = (x+z, y+z),则只需满足 x+z = 1, y+z = -1,显然有无数组解。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2021-3-7 18:37
回复 3# kuing
谢谢,原题成立的原因是什么?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-3-7 20:22
由条件知存在非零实数 a, b 使 OC = aOA+bOB。
OH = OA+xOB+xOC  (1)
OH = yOA+OB+yOC  (2)
OH = zOA+zOB+OC  (3)
(1)-(3) 及 (2)-(3) 得
0 = (1-z)OA+(x-z)OB+(x-1)OC = [1-z+a(x-1)]OA+[x-z+b(x-1)]OB
0 = (y-z)OA+(1-z)OB+(y-1)OC = [y-z+a(y-1)]OA+[1-z+b(y-1)]OB
而 OA、OB 不共线,所以
1-z+a(x-1) = x-z+b(x-1) = y-z+a(y-1) = 1-z+b(y-1) = 0
前两个相减分解得
(x-1)(a-b-1)=0
后两个相减分解得
(y-1)(a-b+1)=0
因为 a-b-1 和 a-b+1 不可能同时为零,所以 x, y 至少一个是 1,代回去即得 x=y=z=1。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-3-7 20:45
回复 2# hjfmhh

设 AG 与 EF 交于 N,你已经证明了 AD+2GH=0,就得到 AN=2NG,所以 N 是重心,也就是说 EF 恒过重心,而 EF 又得恒过 M,所以 M 就只能是 N 啊

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit