Forgot password?
 Register account
View 1969|Reply 7

[几何] 垂心 求证切线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-9 09:55 |Read mode
Last edited by hbghlyj 2021-3-9 10:20BE,CF为`\triangle ABC`的高,BE平分CF于H,BE中点为M,过A作圆BCEF的割线F'B',E'C',`\angle BAB'=\angle CAC'`(有向角),B'E'中点为M',求
证`\angle BOM'\ge \angle BOM`.
72414578_795544637558350_3561505470185209856_o.jpg
作出M'的轨迹`\mathcal{L}`(图中红色曲线),等价于证OM是`\mathcal{L}`的切线.
1639.png

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-3-9 11:45
这么大的图,电脑都无法容纳完,看不清呀

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-3-9 12:46
回复 3# hbghlyj
恰巧滚轮坏了,准备换个鼠标,但是还能坚持用一段时间,鼠标怎么会是滚轮先坏?其它的功能都能用。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-3-9 13:32
回复 4# 其妙

滚轮可以试试自己修,里面那个小零件可以拆开,底座擦一擦,三个触点刮一刮,或许就好了。
我现在用的鼠标就是这样,用了好多年,换别的手感很难习惯,所以一直就这样修过来,至于左右键就不好修,我就买了十个微动开关,可以一直换

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-3-9 13:37
Last edited by hbghlyj 2021-3-9 13:43我最初的想法是
BB'趋于B处的切线,EE'趋于E处的切线,它们关于OM对称.M'是B'E'的中点,M是BE的中点,所以就能说明........MM'趋于CM?
后来发现,这样想是不严谨的.比如
1639.png
B'在BO上运动,E'在OE上运动,BB'和EE'关于OM对称,BB':EE'为定值,M为BE中点,M'为B'E'中点,则MM'是一条定直线,不一定是OM.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-3-9 13:53
回复 1# hbghlyj
设B'E'与B,E处的切线交于$B_0,E_0$,$B_0E_0$中点为$M_0$,只需证$M_0M$的极限是OM.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-3-9 15:43
Last edited by hbghlyj 2021-3-9 19:19又弄出来一些小东西:
$\triangle ABC$的高BE,CF交于H,H为CF中点,M为BE中点,过E作圆BCEF的切线与AB交于Q,AM与QE交于P,求证AQ与圆APE相切
1639.png 1639.png
证:设O为BC中点,EO交AM于D.∵ABEM~ACFH,∴∠BAD=∠CAH=∠EBC=∠BEO,∴DEO共线.
∵∠DEP=∠AEB,∴∠AEP=∠BED,∴△AEP~△BED,∴∠DPE=π-∠BDE=∠BAC.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-3-9 17:03
Last edited by hbghlyj 2021-3-10 01:37在E处的圆O切线上取点G使∠GAH=∠EHF,K是B处的圆O切线和AM的交点,求证:GK中点在BE上.
证:G,K联系不大,所以去证G,K到BE距离相等.这两个距离分别是GEcos∠GEA,BKcos∠(BK,AC).易证∠GEA=∠(BK,AC).只需证GE=BK.作K关于MO的对称点K'则GEK'共线.设MK'与AE交于X,则∠EMX=∠BMK=∠AME,又ME⊥AX,∴AE=XE.又AG∥XK',∴GE=K'E=BK.

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit