Forgot password?
 Register account
View 1498|Reply 1

[数论] 求证$\sqrt{2}n\cdot\{\sqrt{2}n\}>\frac{1}{2}$

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2021-3-15 15:05 |Read mode
如题,$n$是正整数,$\{x\}$表示$x$的小数部分,求证$\sqrt{2}n\cdot\{\sqrt{2}n\}>\frac{1}{2}$。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2021-3-15 16:53
回复 1# abababa

这个我做出来了。设$\sqrt{2}n=k+c$,其中$k=[\sqrt{2}n]$。然后两边平方,就是$2n^2=k^2+2kc+c^2$,也就是$2kc+c^2=2n^2-k^2$,左边是正的,所以右边也是正的,但是右边又是整数,所以右边大于等于$1$,所以左边$2kc+c^2\ge 1$,然后左边再加$c^2$就把等号去掉了,就是$2kc+2c^2>1$,也就是$(k+c)c>\frac{1}{2}$,也就是要证明的那个结论。

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit