Forgot password?
 Register account
View 1448|Reply 2

[数论] 存在c使集合$x^2+ax+b$和$2x^2+2x+c$不相交

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2021-3-17 11:25 |Read mode
求证对任意正整数$a,b$都存在整数$c$,使得集合$M_1=\{x^2+ax+b: x\in\mathbb{Z}\}$与集合$M_2=\{2x^2+2x+c: x\in\mathbb{Z}\}$不相交。

我想到的是对$M_2$作模$4$划分,这样对给定的$c$,$M_2$就只能落在某一个同余类里。然后我想把$M_1$也这样划分,证明$M_1$不足以属于全部4类。
当给定$a$为奇数时,可以证明$M_1$或者包含于$[1\pmod{4}]\cup[3\pmod{4}]$(此时$b$是奇数),或者包含于$[2\pmod{4}]\cup[0\pmod{4}]$(此时$b$为偶数),这样对给定的$a,b$,就能选择一个$c$,让$M_2$不在这两类里,这样就成立了。
当给定$a$为偶数时要怎么证明呢?

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2021-3-18 09:15
$2x^2+2x+c\equiv c\pmod{4}\left(2x^2+2x+c\equiv c\pmod{2}\right)$

當$a=2k+1$

$x^2+ax+b\equiv x^2+x+2kx+b\equiv b\pmod{2}$

可取$c\equiv b+1\pmod{2}$

當$a=2k$

$x^2+ax+b\equiv \begin{cases}
b\pmod{4} & x\equiv 0\pmod{4}\\
b+2k+1\pmod{4} & x\equiv 1\pmod{4}\\
b\pmod{4} & x\equiv 2\pmod{4}\\
b+2k+1\pmod{4} & x\equiv 3\pmod{4}\end{cases}$

可取$c\equiv b+2\pmod{4}$

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2021-3-18 10:37
回复 2# tommywong
原来如此,得对x也模4分类才行,谢谢。

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit