Forgot password?
 Register account
View 1663|Reply 3

[函数] 两零点证$\sqrt{x_1^2+x_2^2}>4/e$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-3-18 11:01 |Read mode
(源自2021月3月高三广州一模)

已知函数$f(x)=\ln x-ax+1(a\in \mathbf{R})$.若$f(x)$有两个零点$x_1,x_2$,且$x_2>2x_1$,证明:$\sqrt{x_1^2+x_2^2}>\frac{4}{\text{e}}$.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-3-18 11:31
Last edited by isee 2021-3-18 15:23回复 1# isee

尝试转化为$$x_1^2+x_2>2x_1x_2>\frac {16}{\mathrm e^2}\Leftarrow x_1x_2>\frac 8{\mathrm e^2}\iff 2+\ln x_1x_2>3\ln 2.$$

由$ax_1=\ln x_1+1,ax_2=\ln x_2+1$可得$$\frac{x_1-x_2}{\ln x_1-\ln x_2}=\frac{x_1+x_2}{\ln x_1x_2+2},$$

所以$$2+\ln x_1x_2=\frac {(x_1+x_2)(\ln x_1-\ln x_2)}{x_1-x_2},$$

这就转化为常见的式子了,令$$F(x)=\frac{(t+1)\ln t}{t-1},t=\frac {x_1}{x_2},$$

观察到$F(1/2)=3\ln 2$,想法顺利实施~

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2021-3-18 11:50
大部分人应该都是用基本不等式+比值代换吧

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-3-18 13:00
回复 3# facebooker


正是没有反常规,所以发上来了,以示“更多面”

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit