|
Author |
hbghlyj
Posted 2021-3-24 20:57
Last edited by hbghlyj 2022-4-29 18:49下面是一个特殊情况的证明,E和F是等角共轭(抛砖引玉,希望得到一般情况的证明)
凸四边形ABCD中AB∩CD=E,BC∩DA=F,E在BA,CD延长线上,F在DA,CB延长线上,则\[\sqrt{AB\cdot B C\cdot C D\cdot D A}=\sqrt{AE\cdot A F\cdot C E\cdot C F}-\sqrt{BE\cdot B F\cdot D E\cdot D F}.\]
证明:
令$\alpha=\angle AED,\beta=\angle BFA,$
由正弦定理,$\frac{AE}{\sin{D}}=\frac{AD}{\sin{\alpha}},\ \frac{AF}{\sin{B}}=\frac{AB}{\sin{\beta}},\ \frac{CE}{\sin{B}}=\frac{BC}{\sin{\alpha}},\ \frac{CF}{\sin{D}}=\frac{CD}{\sin{\beta}},$故$\sqrt{AE\cdot A F\cdot C E\cdot C F}=\frac{\sin{B}\sin{D}}{\sin{\alpha}\sin{\beta}}\sqrt{AB\cdot B C\cdot C D\cdot D A}.$
同理,$\sqrt{BE\cdot B F\cdot D E\cdot D F}=\frac{\sin{A}\sin{C}}{\sin{\alpha}\sin{\beta}}\sqrt{AB\cdot B C\cdot C D\cdot D A}.$由$\cos{\left(B+D\right)=\cos{\left(A+C\right)}}$得所欲证式. |
|