Forgot password
 Register account
View 1826|Reply 12

[几何] 离心率的取值范围

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2021-3-22 12:37 |Read mode
关于a,c的不等式写不出来,请教各位,谢谢!
屏幕截图 2021-03-22 102217.png

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2021-3-22 13:54
哪位大咖能指点一下,谢谢谢谢啦!

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2021-3-22 15:52
回复 2# lrh2006


    设A(s,t),$-c<s\le -a$,A在双曲线上及AF1=c,可得离心率范围。
用第二定义会更快$e=\frac{AF_1}{d}=\frac{c}{\frac{a^2}{c}-s}$
$-c<s=\frac{a-c}{e}\le -a$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-3-22 16:34
`\lceil F_1F_2\rceil` 向上取整?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-3-22 16:46
`F_1F_2=2c`, `AF_1=c`, `AF_2=2a+c`,由 `F_1F_2>AB` 知 `\angle AF_1F_2` 为锐角,从而
\[(2c)^2+c^2>(2a+c)^2\iff\sqrt5c>2a+c\iff e>\frac2{\sqrt 5-1}=\frac{\sqrt 5+1}2.\]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-3-22 17:03
回复 3# realnumber

第二行的分母准线少了一个负号。

结果是D

也可以用第一定义推导——相当于第二定义的等价式——几何表达式——
连接$AF_2$,记$\angle AF_1F_2=\alpha$,在$\triangle AF_1F_2$中,由余弦定理$$(2a-AF_1)^2AF_2^2=AF_1^2+4c^2-2\cdot AF_1\cdot 2c\cdot \cos alpha\Rightarrow AF_1=\frac {b^2}{a-c\cos \alpha},$$
这其实就是双曲线左焦点,左支上的焦半径公式,此过程具有通性.

依条件等腰梯形$ABF_2F1$的底角$$\alpha\in (0,90^\circ\Rightarrow \cos\alpha\in (0,1),$$

于是$$\cos\alpha=\frac{b^2-ac}{c^2}>0,$$
进一步得$$e>\frac{1+\sqrt 5}2.$$

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-3-22 17:05
`F_1F_2=2c`, `AF_1=c`, `AF_2=2a+c`,由 `F_1F_2>AB` 知 `\angle AF_1F_2` 为锐角,从而
\[(2c)^2+c^2>(2a ...
kuing 发表于 2021-3-22 16:46
是哦,直接用锐角+第一定义,还是你高一手~

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-3-22 17:07
Last edited by isee 2021-3-22 17:14回复 6# isee


6#数学公式输入有大瑕疵,但由于本质就是5#,不改了

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-3-22 17:09
回复 4# kuing


    我倒是觉得,像楼主的这样的老会员亏了,这么多年过去了,公式依然没有学会,只是当作一个解决问题的普通论坛,,,,,,,,

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2021-3-23 13:55
懂了懂了,谢谢楼上各位,你们都太好了,我怎么没想到,哎。。。

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2021-3-23 13:57
回复 9# isee

我没把这里当普通论坛诶,这里是宝藏论坛,只是我修炼不够,我还在凡间,这里是仙界哈哈

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2021-3-23 13:58
回复 4# kuing

kk你是火眼金睛吗?我竟然没有注意到,嘻嘻

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-3-23 14:21
回复 12# lrh2006

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:44 GMT+8

Powered by Discuz!

Processed in 0.014336 seconds, 26 queries