Forgot password?
 Register account
View 1807|Reply 8

[几何] 反比例函数下的中考几何题

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-3-28 22:23 |Read mode
如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=k/x (k>0,x>0)的图像上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.若OD=3,OC=5,则k的值为___7.5___.


当然,到角公式直接就秒了,若限定在中考,这几何题还是挺难的

反比例函数下的中考几何题

反比例函数下的中考几何题

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-29 00:21
以下转载自 题拍拍 陈伊 的解答
设P在x轴,y轴,AB上的投影为N,M,Q.∵AP平分∠MAB,∴∠MAP=∠BAP.在△PAM与△PAQ中,∠PMA=∠PQA,∠MBP=∠BAP,AP=AP,∴△PAM≅△PAQ(AAS).∴MA=QA,PM=PQ.同理△PBN≅△PBQ,∴NB=QB,PN=PQ.设PM=m,则PM=PQ=PN=m,故四边形ONPM为正方形.设OA=b,OB=c,则AM=m=b,BM=m-c.AB=AQ+BQ=MA+BN=2m-b-c①.在△AQB中,∠AOB=90°,∴$OA^2+OB^2=AB^2,$即$b^2+c^2=(2m-b-c)^2$.又∠PMA=∠PAO=90°,∠MAP=∠OAC,OC=5.∴△AOC~△APM,∴$\frac{AO}{AM}=\frac{OC}{MP}$,即$\frac b{m-b}=\frac5m$,得$b=\frac{5m}{5+m}$②.同理,△OBD≅△NBP,$\frac{BD}{BN}=\frac{OD}{PN}$.由OD=3,$\frac{c}{m-c}=\frac3m$,得$c=\frac{3m}{3+m}$③.由①知$4m^2=4mb+4mc-2bc,$即$2m^2+bc=2m(b+c)$.把②③代入得$2m^2+\frac{15m^2}{(5+m)(3+m)}=2m\left(\frac{5m}{5+m}+\frac{3m}{3+m}\right)$,解得$m^2=\frac{15}2$,故$k=m^2=\frac{15}2$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-29 00:40
总之就是
P为AOB的旁心, 旁切圆P的半径为r,则$2r^2=OC⋅OD$.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-3-29 00:45
总之就是
P为AOB的旁心, 旁切圆P的半径为r,则$2r^2=OC⋅OD$.
hbghlyj 发表于 2021-3-29 00:40
我也是这样猜的,就是证不出来感觉应该会有很简单的方法。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-29 00:50
回复 3# hbghlyj
直接计算也很简单的.设AO=a,BO=b,AB=c,则$OC=\frac{ab}{c-a},OD=\frac{ab}{c-b}$.而$r=\frac{2ab}{a+b-c}$.
只需证$\frac{a^2b^2}{c^2-(a+b)c+ab}=2\left(\frac{ab}{a+b-c}\right)^2⇔(a+b-c)^2=2(c^2-(a+b)c+ab)$.
显然成立.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-29 00:54
捂脸~~
由△COP~△POD得$CO⋅DO=PO^2=2r^2$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-3-29 01:18
回复 4# 色k


哈哈哈哈哈, hbghlyj 在 6#已揭晓

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-29 01:20
回复 7# isee
......6楼应该是出题人的方法

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-3-29 01:31
果然有秒法
这名字我喜欢

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit