Forgot password
 Register account
View 1549|Reply 2

[不等式] 一道四元不等式

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2021-3-29 13:25 |Read mode
Last edited by hbghlyj 2021-3-29 17:02a,b,c,d>0,a+b+c+d=1,求证\[\frac{1}{{{(a+b)}^{3}}}+\frac{1}{{{(b+c)}^{3}}}+\frac{1}{{{(c+d)}^{3}}}+\frac{1}{{{(d+a)}^{3}}}-32\ge 192{{\left( a-c \right)}^{2}}+192{{\left( b-d \right)}^{2}}\]
当且仅当a=b=c=d时取等.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-3-29 14:32
a,b,c,d>0,a+b+c+d=1,求证$$\frac{1}{{{(a+b)}^{3}}}+\frac{1}{{{(b+c)}^{3}}}+\frac{1}{{{(c+d)}^{3}}}+\frac{1}{{{(d+a)}^{3}}}-32\ge {{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}$$
撸了下得出比右边大得多的系数……都怀疑是不是算错了,还是你的题目打错,你瞧瞧:

首先,对任意 `x`, `y>0` 有
\[\frac1{x^3}+\frac1{y^3}-\frac{16}{(x+y)^3}=\frac{(x-y)^2(x^4+5x^3y+12x^2y^2+5xy^3+y^4)}{x^3y^3(x+y)^3},\]利用 `x^4+y^4\geqslant x^3y+xy^3` 放缩下,刚好可以约,得到
\[\frac1{x^3}+\frac1{y^3}-\frac{16}{(x+y)^3}\geqslant\frac{6(x-y)^2}{x^2y^2(x+y)},\]特别地,当 `x+y=1` 时,`xy\leqslant1/4`,故
\[\frac1{x^3}+\frac1{y^3}-16\geqslant96(x-y)^2,\]于是对于原题,就有
\begin{align*}
\frac1{(a+b)^3}+\frac1{(c+d)^3}-16&\geqslant96(a+b-c-d)^2,\\
\frac1{(b+c)^3}+\frac1{(d+a)^3}-16&\geqslant96(b+c-d-a)^2,
\end{align*}相加,并注意到恒等式 `(a+b-c-d)^2+(b+c-d-a)^2=2(a-c)^2+2(b-d)^2`,即得
\[\frac1{(a+b)^3}+\frac1{(b+c)^3}+\frac1{(c+d)^3}+\frac1{(d+a)^3}-32\geqslant192(a-c)^2+192(b-d)^2.\]

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2021-3-29 17:00
回复 2# kuing
谢谢解答! 我是从ionbursuc的帖子转来的. 应该是他打错了.已经修改了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:17 GMT+8

Powered by Discuz!

Processed in 0.020934 seconds, 23 queries