Forgot password?
 Register account
View 1409|Reply 1

[不等式] Schur不等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-4-1 21:39 |Read mode
Last edited by hbghlyj 2021-4-1 22:57对$n\in\mathbb R$,a,b,c≥0有$a^{n}(a-b)(a-c)+b^{n}(b-c)(b-a)+c^{n}(c-a)(c-b) \geq 0$.取等条件是a=b=c或a=0,b=c或b=0,a=c或c=0,a=b.(当然,abc=0时要求$n\ne0$)
证:不妨设a≥b≥c.n≥0时$a^n\ge b^n$,a-c≥b-c,故$\sum a^{n}(a-b)(a-c)=\left[a^{n}(a-c)-b^{n}(b-c)\right](a-b)+c^{n}(c-a)(c-b)$≥0.
n<0时,换元$a=\frac1x$,化成关于x,y,z的-n+1次Schur不等式,或者,$\sum a^{n}(a-b)(a-c)=a^{n}(a-b)(a-c)+\left[c^{n}(a-c)-b^{n}(a-b)\right](b-c)$≥0.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-4-1 21:48
Last edited by hbghlyj 2021-4-1 23:07以下均假定a,b,c>0,
(1)n=0时展开得$a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.事实上$\forall a, b, c \in \mathbb{R}$成立.
(2)n=1时展开得$a^{3}+b^{3}+c^{3}+3 a b c \geq a^{2} b+b^{2} c+c^{2} a+a b^{2}+b c^{2}+c a^{2}$.
(3)n=1时等价于$a b c \geq(-a+b+c)(a-b+c)(a+b-c)$.
(4)n=1时等价于$(a+b+c)^{2}+\frac{9 a b c}{a+b+c} \geq 4(a b+b c+c a)$.
(5)欧拉不等式R≥2r用三边长a,b,c表达出来是$\frac{a b c}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}} \geq \sqrt{\frac{(-a+b+c)(a-b+c)(a+b-c)}{a+b+c}}$立即化为(3).
(6)Gerretsen不等式$16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+r^{2}$.
作代换a=x+y,⋯得$s^{2}-16 R r+5 r^{2} \geq 0 \Longleftrightarrow \sum x(x-y)(x-z) \geq 0$.
$4 R^{2}+4 R r+3 r^{2}-s^{2} \geq 0 \Longleftrightarrow \sum x^{4}(y-z)^{2}+2 \cdot \sum p(p-q)(p-r) \geq 0$,其中p=xy,q=yz,r=zx.
(7)n=2时展开得$a^{4}+b^{4}+c^{4}+a b c(a+b+c) \geq a^{3} b+b^{3} c+c^{3} a+a b^{3}+b c^{3}+c a^{3}$.
(8)n=2时等价于$(a+b+c)\left(a^{3}+b^{3}+c^{3}+3 a b c\right) \geq 2\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a)$.
(9)n=1时等价于$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4 a b c}{(a+b)(b+c)(c+a)} \geq 2$
(10)abc=1,$(a-1)\left(\frac{1}{b}-1\right)+(b-1)\left(\frac{1}{c}-1\right)+(c-1)\left(\frac{1}{a}-1\right) \geq 0$.令$a=\frac xy$即化为(1).
(11)n=1时等价于$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)+9 a b c \geq 2(a+b+c)(a b+b c+c a)$.
(12)$a^2+b^2+c^2+2abc+1\ge2(ab+bc+ca)$是(4)的弱化.
(13)n=2时等价于$a^{3}+b^{3}+c^{3}+3 a b c \geq \sum_{c y c} b c(b+c)+\frac{b c(b-c)^{2}+c a(c-a)^{2}+a b(a-b)^{2}}{a+b+c}$是n=1的加强.
(14)n=2时等价于$a^{2}+b^{2}+c^{2}+\frac{6 a b c(a+b+c)}{a^{2}+b^{2}+c^{2}+a b+b c+c a} \geq 2(a b+b c+c a)$.
(15)$\left(\frac{a}{b+c}\right)^{2}+\left(\frac{b}{c+a}\right)^{2}+\left(\frac{c}{a+b}\right)^{2}+\frac{10 a b c}{(a+b)(b+c)(c+a)} \geq 2$
(16)$\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}+\frac{8 a b c}{(a+b)(b+c)(c+a)} \geq 2$比n=1强,比n=3弱.
(17)n=3等价于$a^{2}+b^{2}+c^{2}+\frac{6 a b c}{a+b+c}+\frac{(a+b+c) a b c}{a^{2}+b^{2}+c^{2}} \geq 2(a b+b c+c a)$
(18)在三角形中,$\sum a^3-2\sum a^2(b+c)+9abc\le0$.作代换a=x+y,⋯化为(2).
(19)a+b+c=1,$0\le ab+bc+ca-2abc\le\frac7{27}$.左边由$ab\ge abc,bc\ge abc$即得.右边齐次化得(4).
(20)a+b+c=abc,$a^2+b^2+c^2-2\sum ab+9\ge0$.齐次化得(2).
(21)$\sqrt{abc}(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a+b+c)^2 \ge 4 \sqrt{3abc(a+b+c)}$.对ab,bc,ca用(1)得$ RHS \le 4\sum{ab} $.只需证$ \sqrt{abc}\sum\sqrt a +\sum a^{2} \ge 2\sum{ab} $.作代换$ \sqrt a=x, \sqrt b=y, \sqrt c=z$,化为$ \sum x^{4}+xyz\sum x \ge 2\sum {x^{2}y^{2}} $,由(7)和$x^3y+xy^3\ge2x^2y^2$即得.

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit