Forgot password?
 Register account
View 1550|Reply 3

[不等式] 三元不等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-4-2 01:55 |Read mode
Last edited by hbghlyj 2021-4-2 02:36(1)a,b,c>0,求证\[a^2+b^2+c^2-ab-bc-ca\geq3\sqrt[3]{\frac{abc\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\](2)a,b,c>0,bc+ca+ab≠0,求证\[\frac{(a-b)^2}{a+b}+\frac{(a-c)^2}{a+c}+\frac{(b-c)^2}{b+c}\geq\sqrt[3]{\frac{24\sqrt{3}(a-b)^2(a-c)^2(b-c)^2}{(a+b)(a+c)(b+c)}}\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-4-2 14:15
(1)`\LHS=\frac 12\sum (a-b)^2\geqslant \frac 32\sqrt[3]{\prod (a-b)^2}\geqslant \RHS`

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-4-2 15:39
回复 2# kuing
谢谢.
这个题是这样来的:
$\LHS=\sum\frac{{(a-b)}^2(a+b)c}{(a+c)(b+c)}\ge\RHS$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-4-2 16:15
回复 3# hbghlyj

圆奶乳齿……

但第二题好像很难,看取等就有点不敢撸:`a:b:c=0:1:(\sqrt3\pm\sqrt2)`……

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit