|
Last edited by hbghlyj 2021-4-2 02:36(1)a,b,c>0,求证\[a^2+b^2+c^2-ab-bc-ca\geq3\sqrt[3]{\frac{abc\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\](2)a,b,c>0,bc+ca+ab≠0,求证\[\frac{(a-b)^2}{a+b}+\frac{(a-c)^2}{a+c}+\frac{(b-c)^2}{b+c}\geq\sqrt[3]{\frac{24\sqrt{3}(a-b)^2(a-c)^2(b-c)^2}{(a+b)(a+c)(b+c)}}\] |
|