|
$ \frac {1}{3(1 - x)^3 + 3(1 - y)^3 + 3(1 - z)^3 + 23(1 - x)(1 - y)(1 - z)}+ \frac {1}{3(1 + x)^3 + 3(1 + y)^3 + 3(1 + z)^3 + 23(1 + x)(1 + y)(1 + z)}\geq \frac {1}{16},$
$ \cfrac {\cfrac{1}{1 - x} + \cfrac{1}{1 - y} + \cfrac{1}{1 - z}}{(1 - x)^{2} + (1 - y)^{2} + (1 - z)^{2}} + \cfrac {\cfrac{1}{1 + x} + \cfrac{1}{1 + y} + \cfrac{1}{1 + z}}{(1 + x)^{2} + (1 + y)^{2} + (1 + z)^{2}} \geq 2.$
原帖 |
|