Forgot password?
 Register account
View 1518|Reply 0

[不等式] Klamkin's inequality的加强

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2021-4-3 17:59 |Read mode
$ \frac {1}{3(1 - x)^3 + 3(1 - y)^3 + 3(1 - z)^3 + 23(1 - x)(1 - y)(1 - z)}+ \frac {1}{3(1 + x)^3 + 3(1 + y)^3 + 3(1 + z)^3 + 23(1 + x)(1 + y)(1 + z)}\geq \frac {1}{16},$
$ \cfrac {\cfrac{1}{1 - x} + \cfrac{1}{1 - y} + \cfrac{1}{1 - z}}{(1 - x)^{2} + (1 - y)^{2} + (1 - z)^{2}} + \cfrac {\cfrac{1}{1 + x} + \cfrac{1}{1 + y} + \cfrac{1}{1 + z}}{(1 + x)^{2} + (1 + y)^{2} + (1 + z)^{2}} \geq 2.$
原帖

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 08:26 GMT+8

Powered by Discuz!

Processed in 0.013719 second(s), 21 queries

× Quick Reply To Top Edit