|
Author |
kuing
Posted 2021-4-4 15:23
emm,总算切出比来了:
\[\sum\left( \frac{a^4+2b^2c^2}{a^2+2bc}-a^2 \right)=2\sum\frac{bc(bc-a^2)}{a^2+2bc}=2abc\sum\frac{(b+c)(bc-a^2)}{a(b+c)(a^2+2bc)},\]由
\begin{align*}
(b+c)(bc-a^2)-(c+a)(ca-b^2)&=-(a-b)(ab+2ac+2bc+c^2),\\
a(b+c)(a^2+2bc)-b(c+a)(b^2+2ca)&=(a-b)(a^2b+ab^2+a^2c+b^2c-abc),
\end{align*}可知以下两序列为同序
\begin{gather*}
\{(b+c)(bc-a^2),(c+a)(ca-b^2),(a+b)(ab-c^2)\},\\
\left\{ \frac1{a(b+c)(a^2+2bc)},\frac1{b(c+a)(b^2+2ca)},\frac1{c(a+b)(c^2+2ab)} \right\},
\end{gather*}故由切比雪夫得
\[\sum\frac{(b+c)(bc-a^2)}{a(b+c)(a^2+2bc)}\geqslant\frac13\sum(b+c)(bc-a^2)\sum\frac1{a(b+c)(a^2+2bc)}=0.\] |
|