Forgot password?
 Register account
View 1565|Reply 1

[不等式] 来自网友的三元不等式——如何切比?[已切出]

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-4-4 00:38 |Read mode
已知 `a`, `b`, `c>0`,求证
\[\sum\frac{a^4+2b^2c^2}{a^2+2bc}\geqslant\sum a^2.\]
来源于 artofproblemsolving.com/community/c6h260824p1420410 的其中一步,can 说是由切比雪夫得到的,但我看了半天没看出怎么个切比法,只想到如下的 CS:
\[\LHS=\sum\frac{a^4-4b^2c^2+6b^2c^2}{a^2+2bc}=\sum(a^2-2bc)+6\sum\frac{b^2c^2}{a^2+2bc},\]所以不等式化为
\[3\sum\frac{b^2c^2}{a^2+2bc}\geqslant\sum bc,\]令 `bc=x`, `ca=y`, `ab=z`,上式化为
\[3\sum\frac{x^3}{yz+2x^2}\geqslant\sum x,\]由 CS 有
\[\LHS=3\sum\frac{(x^2)^2}{xyz+2x^3}\geqslant\frac{3(x^2+y^2+z^2)^2}{3xyz+2(x^3+y^3+z^3)},\]故只需证
\[3(x^2+y^2+z^2)^2\geqslant\bigl( 3xyz+2(x^3+y^3+z^3) \bigr)(x+y+z),\]配方为
\[(x^2+y^2+z^2-xy-yz-zx)^2+\frac32\sum x^2(y-z)^2\geqslant0,\]即得证。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2021-4-4 15:23
emm,总算切出比来了:
\[\sum\left( \frac{a^4+2b^2c^2}{a^2+2bc}-a^2 \right)=2\sum\frac{bc(bc-a^2)}{a^2+2bc}=2abc\sum\frac{(b+c)(bc-a^2)}{a(b+c)(a^2+2bc)},\]由
\begin{align*}
(b+c)(bc-a^2)-(c+a)(ca-b^2)&=-(a-b)(ab+2ac+2bc+c^2),\\
a(b+c)(a^2+2bc)-b(c+a)(b^2+2ca)&=(a-b)(a^2b+ab^2+a^2c+b^2c-abc),
\end{align*}可知以下两序列为同序
\begin{gather*}
\{(b+c)(bc-a^2),(c+a)(ca-b^2),(a+b)(ab-c^2)\},\\
\left\{ \frac1{a(b+c)(a^2+2bc)},\frac1{b(c+a)(b^2+2ca)},\frac1{c(a+b)(c^2+2ab)} \right\},
\end{gather*}故由切比雪夫得
\[\sum\frac{(b+c)(bc-a^2)}{a(b+c)(a^2+2bc)}\geqslant\frac13\sum(b+c)(bc-a^2)\sum\frac1{a(b+c)(a^2+2bc)}=0.\]

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit