Forgot password
 Register account
View 1448|Reply 4

[数论] $a\mid b\mid c$,则集合$\frac{c}{b}$=集合$x|\frac{c}{a}$

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2021-4-5 14:51 |Read mode
Last edited by abababa 2021-4-5 21:11如题,给定两个正整数$a,c$,正整数$b$满足$a\mid b,b\mid c$,求证集合$\{\frac{c}{b}: a\mid b,b\mid c\}\cup\{1\}=\{x:x\mid\frac{c}{a}\}$
比如$a=2,c=12$,这时满足条件的$b$有$2,4,6$三个,前一个集合就是$\{6,3,2\}$,后一个集合就是$\{x:x\mid 6\}=\{1,2,3,6\}$

根据2、3楼的提示,将上面原来的求证,改为:求证集合$\{\frac{c}{b}: a\mid b,b\mid c\}=\{x:x\mid\frac{c}{a}\}$。示例$a=2,c=12$的情况也需要作相应的修改。

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2021-4-5 16:40
$a=2,c=12$時,b可以是12
$\{\frac{c}{b}:a\mid b,~b\mid c\}=\{x:a\mid\frac{c}{x},~\frac{c}{x}\mid c\}
=\{x:x\mid\frac{c}{a},~x\in\mathbb{Z}\}$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-4-5 19:15
的确不需要 ∪{1} 也不应该并,这样 a 不整除 c 时两边都为空集,等式仍然成立。

当 a|c 时才存在 b,设 c=a·2^n1·3^n2·5^n3·…,则
{b : a|b,b|c} = {a·2^x1·3^x2·5^x3·… : 0<=xi<=ni}

{c/b : a|b,b|c} = {2^(n1-x1)·3^(n2-x2)·5^(n3-x3)·… : 0<=xi<=ni}
                       = {2^y1·3^y2·5^y3·… : 0<=yi<=ni}
另一方面显然
{x : x|c/a} = {2^x1·3^x2·5^x3·… : 0<=xi<=ni}
所以 {c/b : a|b,b|c} = {x : x|c/a}

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2021-4-5 21:18
回复 2# tommywong
这里就是第一个等号处,两个集合相等我弄不明白,拿几个具体的数试验时知道是这么回事,就是写不清证明。

回复 3# kuing
谢谢,这个证明我看懂了。

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2021-4-5 21:51
回复 4# abababa

$x=\frac{c}{b}$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:35 GMT+8

Powered by Discuz!

Processed in 0.011613 seconds, 23 queries