|
Last edited by hbghlyj 2021-4-8 00:53整数$n\ge2$,正实数$a_{1}, a_{2}, \cdots, a_{n}, x_{1}, x_{2}, \cdots, x_{n}$,满足$\sum_{1 \leq i<j \leq n} x_{i} x_{j}=n$,证明$\sum_{i=1}^{n}\left(\frac{a_i}{\sum\limits_{j \neq i} a_{j}} \cdot \sum\limits_{j \neq i} x_{j}\right) \geq n$
据说取等不唯一 |
|