Forgot password?
 Register account
View 1476|Reply 4

[不等式] $a+b+c=a^{-1}+b^{-1}+c^{-1}$的三元条件不等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-4-9 11:52 |Read mode
Last edited by hbghlyj 2021-4-9 14:20a,b,c>0,$a+b+c=a^{-1}+b^{-1}+c^{-1}$,求证\[a+b+c\geq\frac{132-93abc}{41-36abc+8a^2b^2c^2}\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-4-9 17:30
没啥难度的说……
记 `p=a+b+c`, `q=ab+bc+ca`,条件即 `abc=q/p`,代入不等式中去分母后变成
\[41p^2-36pq+8q^2-132p+93q\geqslant 0,\]由均值有 `q^2\geqslant 3abcp=3q` 得 `q\geqslant 3` 以及 `p^2\geqslant 3q\geqslant 9` 得 `p\geqslant 3`,故令 `p=3+t`, `q=3+u`, `t`, `u\geqslant 0`,代入上式展开为
\[41t^2-36tu+8u^2+6t+33u\geqslant 0,\]而 `36^2-4\cdot 41\cdot 8=-16<0`,故显然成立。

这样看来那些系数应该还有很大的改进空间……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-4-10 19:05
回复 2# kuing
乱改了一下,用MMA验证发现,在原题的条件下,有下面的不等式成立:\[-324800+\left(134335+4900\sum a^2+175\sum{a^2b^2}\right)\sum a-44800\sum a^2-5600\sum{a^2b^2}-8395\sum a b+\left(275+5426\sum a^2+11984\sum a b\right)abc\geq0\]即\[-324800+134335p-44800p^2+4900p^3+81205q-9800pq-5600q^2+175pq^2+275r+11200pr+5076p^2r+1132qr≥0\]即\[175 t^2 u^2-3674 t^2 u+4900 t^4+14000 t^3-16862 t^2-4550 t u^2+36761 t u-47957 t-14093 u^2+150416 u\ge0\]
如何证明呢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-4-10 19:18
回复 3# hbghlyj
即\[\left(175 t^2-4550 t-14093\right) u^2+\left(-3674 t^2+36761 t+150416\right) u+4900 t^4+14000 t^3-16862 t^2-47957 t\ge0\]左边关于u的判别式为$f(t)=-3430000 t^6+79380000 t^5+556324476 t^4+245769672 t^3-1577247711 t^2+8355453148 t+22624973056$
$u^2$的系数为$g(t)=175 t^2-4550 t-14093$
令$\alpha=\frac{1}{35} \left(6 \sqrt{8491}+455\right)$
$\beta=\text{Root}\left[3430000 \text{$\#$1}^6-79380000 \text{$\#$1}^5-556324476 \text{$\#$1}^4-245769672 \text{$\#$1}^3+1577247711 \text{$\#$1}^2-8355453148 \text{$\#$1}-22624973056\&,2,0\right]$
有$\alpha\approx 28.7966<\beta\approx28.838$
当$t >\beta$时f(t)>0且g(t)<0,不等式成立.
还剩下$t \le\beta$的情况......

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-4-12 22:39
回复 3# hbghlyj
试一下kuing提到的稍强的换元$q\to u+3,p\to \sqrt{t+3 (u+3)}$,化为
$4900 t^2+u^2 \left(35785-5600 \sqrt{t+3 u+9}\right)+t \left(-44800 \sqrt{t+3 u+9}+175 u^2+25726 u+209938\right)+u \left(603815-75595 \sqrt{t+3 u+9}\right)-501185 \left(\sqrt{t+3 u+9}-3\right)+525 u^3\ge0$
但是当$t\to 7,u\to \frac{1}{8}$时不成立.
尝试失败了

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit