|
kuing
Posted at 2021-4-10 15:06:15
第二个:令 `f(x)=\sin x-\ln (x+1)`,其中 `0<x<\pi/2`,求导得
\begin{align*}
f'(x)&=\cos x-\frac 1{x+1},\\
f''(x)&=-\sin x+\frac 1{(x+1)^2},\\
f'''(x)&=-\cos x-\frac 2{(x+1)^3}<0,
\end{align*}所以 `f''(x)\searrow `,又 `f''(0)=1`, `f''(\pi /2)=-1+\frac 1{(\pi /2+1)^2}<0`,所以 `f''(x)` 先正后负,即 `f'(x)\nearrow \searrow `,又 `f'(0)=0`, `f'(\pi /2)=-\frac 1{\pi /2+1}<0`,所以 `f'(x)` 先正后负,即 `f(x)\nearrow \searrow `,又 `f(0)=0`, `f(\pi /2)=1-\ln (\pi /2+1)>1-\ln (3.2/2+1)=1-\ln (2.6)>0`,所以 `f(x)>0`,即得证。 |
|