Forgot password
 Register account
View 1188|Reply 2

[函数] 函数方程的最小值

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2021-4-12 17:25 |Read mode
定义在$(0,+\infty )  $上的减函数$ f(x) $,对任意的$ x∈(0,+\infty ) $均满足$ f(x)\cdot f(f(x)+\dfrac{3}{2x})=\dfrac{1}{4} $,则$ g(x)=f(x)+3x $的最小值______。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-4-12 18:21
老题改编


\[h(x)=f(x)+\frac3{2x},\]条件即
\[f(x)f(h(x))=\frac14,\]进而
\[f(h(x))f(h(h(x)))=\frac14,\]故
\[f(x)=f(h(h(x))),\]而 `f` 单调,故
\[x=h(h(x))=f(h(x))+\frac3{2h(x)}=\frac1{4f(x)}+\frac3{2h(x)}=\frac1{4f(x)}+\frac3{2\left( f(x)+\frac3{2x} \right)},\]解得
\[f(x)=\frac3{4x},\]下略。

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2021-4-12 19:46
回复 2# kuing

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:27 GMT+8

Powered by Discuz!

Processed in 0.010910 seconds, 22 queries