Forgot password?
 Register account
View 1136|Reply 2

[数列] $b_nb_{n+1}=n$

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2021-4-19 13:35 |Read mode
$b_1=1,b_nb_{n+1}=n$
求证:$\frac{1}{b_{1}}+\frac{1}{b_{2}}+\frac{1}{b_{3}}+...+\frac{1}{b_{n}}\ge 2\sqrt{n}-1$



$b_1=1,b_2=1,b_3=2,b_4=\frac{3}{2}$,试了下数学归纳法,没做出来

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2021-4-19 13:42
看了下答案是用$b_nb_{n+1}-b_nb_{n-1}=1$
即$\frac{1}{b_n}=b_{n+1}-b_{n-1}$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-4-24 22:24
看了下答案是用$b_nb_{n+1}-b_nb_{n-1}=1$
即$\frac{1}{b_n}=b_{n+1}-b_{n-1}$
realnumber 发表于 2021-4-19 13:42
算是特殊的技巧,如果只有这种方式,这题临场还是难的

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit