Forgot password
 Register account
View 1151|Reply 2

[数列] $b_nb_{n+1}=n$

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2021-4-19 13:35 |Read mode
$b_1=1,b_nb_{n+1}=n$
求证:$\frac{1}{b_{1}}+\frac{1}{b_{2}}+\frac{1}{b_{3}}+...+\frac{1}{b_{n}}\ge 2\sqrt{n}-1$



$b_1=1,b_2=1,b_3=2,b_4=\frac{3}{2}$,试了下数学归纳法,没做出来

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2021-4-19 13:42
看了下答案是用$b_nb_{n+1}-b_nb_{n-1}=1$
即$\frac{1}{b_n}=b_{n+1}-b_{n-1}$

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-4-24 22:24
看了下答案是用$b_nb_{n+1}-b_nb_{n-1}=1$
即$\frac{1}{b_n}=b_{n+1}-b_{n-1}$
realnumber 发表于 2021-4-19 13:42
算是特殊的技巧,如果只有这种方式,这题临场还是难的

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:13 GMT+8

Powered by Discuz!

Processed in 0.015384 seconds, 22 queries