Forgot password?
 Register account
View 890|Reply 1

[几何] 一個曲綫族 包含圓、雙紐綫

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-4-25 02:08 |Read mode
Last edited by hbghlyj 2021-4-25 19:46Q在以O為中心,半徑為r的圓上運動,Q向右平移一個單位到R.A(2,0).R關於AQ的對稱點為P,則P的軌跡為
$-1 + r^2 + (4 - 2 r^2) x+( r^2-6) x^2 + 4 x^3 - x^4  + (r^2-6) y^2 + 4 x y^2 - 2 x^2 y^2 - y^4=0$
r=$\sqrt2$為雙紐綫$(x^2+y^2)^2=2(x^2-y^2)$向右平移一個單位
r=2时為圓$x^2+y^2=1$
(極限為兩圓$x^2+y^2=1,(x-2)^2+y^2=1$之併.)
r=$2\sqrt2$时為$y^4+2 ((x-2) x-1) y^2+(x-1)^2 ((x-2) x-7)=0$,上頂點处的曲率為0.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-4-25 20:00
昨天搞錯了......r=2时應該隻有一個圓,但是極限是兩個圓.....在r很接近2的情况下,點Q在經過A时,點P会从A開始快速画出另一個圓再回到A,而當r=2时,這個时間間隔變為0,所以隻有一個圓了

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit