|
kuing
Posted 2021-4-29 16:30
只会笨方法:令 `z=x+yi`,则
\[\frac{z(1-z)}{\abs z^2}=\frac{x-x^2+y^2+(y-2xy)i}{x^2+y^2},\]依题意存在 `a`, `b`, `r` 使
\[\left( \frac{x-x^2+y^2}{x^2+y^2}-a \right)^2+\left( \frac{y-2xy}{x^2+y^2}-b \right)^2=r^2,\]即
\[\left( \frac{x(1-2x)}{x^2+y^2}-a+1 \right)^2+\left( \frac{y(1-2x)}{x^2+y^2}-b \right)^2=r^2,\]展开即
\[\frac{(1-2x)^2}{x^2+y^2}+\frac{(Ax+By)(1-2x)}{x^2+y^2}+C=0,\]其中 `A`, `B`, `C` 与 `x`, `y` 无关,去分母之后就是二次的了。 |
|