Forgot password?
 Register account
View 1002|Reply 2

[不等式] 三元轮換不等式求最佳常数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-3 21:54 |Read mode
x,y,z>0,xyz=1,使\[\ \frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3k\geq\left(k+1\right)\frac{x+y+z}{\sqrt[3]{xyz}}\]恒成立的k的最大值为\[k=\frac{3}{\sqrt[3]{4}}-1\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-5 16:52
看着吓人其实一点也不难,作代换 `x=b/a`, `y=c/b`, `z=a/c`, `a`, `b`, `c>0`,不等式化为
\[a^3+b^3+c^3+3kabc\geqslant(k+1)(a^2b+b^2c+c^2a),\]当 `a=b=1`, `c=1/2`, `k=2` 时不等式不成立,这说明 `k` 必须小于 `2`。

不妨设 `a=\min\{a,b,c\}`,令 `b=a+t`, `c=a+u`, `t`, `u\geqslant0`,代入展开按 `a` 整理为
\[(2-k)(t^2-tu+u^2)a+t^3-(1+k)t^2u+u^3\geqslant0,\]于是不等式恒成立当且仅当
\[t^3+u^3\geqslant(1+k)t^2u\]恒成立,由均值
\[\frac12t^3+\frac12t^3+u^3\geqslant\frac3{\sqrt[3]4}t^2u,\]所以 `k` 的最大值就是 `-1+3/\sqrt[3]4\approx0.88988`。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-5 17:39
另外我也想起了《撸题集》P.1008~1010 题目 6.10.93,也是用的增量代换……

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit