Forgot password?
 Register account
View 973|Reply 3

[不等式] $x_1(1-x_2)+x_2(1-x_3)+\cdots+x_n(1-x_1)$的最大值

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-6 22:22 |Read mode
$3\le n\in\mathbb N$,对$x_i\in$(0,1),i=1,2,...,n,求$x_1(1-x_2)+x_2(1-x_3)+\cdots+x_n(1-x_1)$的最大值f(n)
f(3)=1
f(4)=f(5)=2
f(6)=f(7)=3
....
(应该是老题 )

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-6 22:38
只要考虑端点值?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-6 22:39
Last edited by hbghlyj 2021-5-7 14:28看成$x_i$的一次函数,$x_i$的系数为$1-x_{i-1}-x_{i+1}$,因此,取最大值时,若$x_{i-1}+x_{i+1}<1$,则$x_i=1$;若$x_{i-1}+x_{i+1}>1$,则$x_i=0$;若$x_{i-1}+x_{i+1}=1$,则$x_i$任意.我们把$x_{i-1}+x_{i+1}=1$时的$x_i$也取为0,于是只需考虑$x_i$∈{0,1},i=1,2,⋯,n的情况.
而且有:若$x_{i-1}=x_{i+1}=0$,则$x_i=1$;若$x_{i-1},x_{i+1}$不都为0,则$x_i=0$.按这个规则分情况讨论:
若$x_1=x_3=0$,则$x_2=1$,
Case 1:$x_{n-1}=0$,则$x_n=1$,化为$2+x_4\left(1-x_5\right)+\cdots+x_{n-3}\left(1-x_{n-2}\right)+x_{n-2}$①,其中$x_{n-2}$的系数为$1-x_{n-3}\geq0$,令$x_{n-2}=1$,化为$2+x_3\left(1-x_4\right)+\cdots+x_{n-4}\left(1-x_{n-3}\right)$,其中$x_{n-3}$的系数为$-x_{n-4}\le0$,令$x_{n-3}=0$,化为$2+x_3\left(1-x_4\right)+\cdots+x_{n-5}\left(1-x_{n-4}\right)+x_{n-4}$,这就又回到①.
若n为偶数,如此可得$x_i=\frac{1+\left(-1\right)^i}{2}$,原式=$\frac{n}{2}$;若n为奇数,如此可得$x_i=\left\{\begin{matrix}\frac{1+\left(-1\right)^i}{2}&i\le3\\\frac{1-\left(-1\right)^i}{2}&i>3\\\end{matrix}\right.$,原式=$1+\frac{n-3}{2}=\frac{n-1}{2}$.
Case 2:$x_{n-1}=1$,则$x_n=0,x_{n-2}=0$,化为$2+x_4\left(1-x_5\right)+\cdots+x_{n-4}\left(1-x_{n-3}\right)+x_{n-3}$,与①类似.
若$x_1=1$,则$x_2=0$,化为$2+x_3\left(1-x_4\right)+\cdots+x_{n-4}\left(1-x_{n-3}\right)+x_{n-3}$,与①类似.
若$x_3=1$,则$x_2=0$,化为$x_1+2-x_4+x_4\left(1-x_5\right)+\cdots+x_{n-4}\left(1-x_{n-3}\right)+x_{n-3}$,$x_1$的系数为1,令$x_1=1$.$x_4$的系数为$-x_5$,令$x_4=0$.化为$3+x_5\left(1-x_6\right)+\cdots+x_{n-4}\left(1-x_{n-3}\right)+x_{n-3}$,与①类似.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-7 14:29
回复 2# kuing
3#的证明是否正确呢

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit