Forgot password?
 Register account
View 777|Reply 1

[不等式] 三元轮換不等式求最佳常数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-11 13:56 |Read mode
a,b,c>0,$k\ge\frac{\sqrt{3}+1}{2} $,求证\[(a^2 + k) (b^2 + k) (c^2 + k) \ge \frac{(k + 1)^2}3 (a + b + c)^2 + k^3 - 3 k - 2\]取等条件是a=b=c=1.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-11 14:01
Last edited by hbghlyj 2021-5-11 14:09k≥2时证明如下:
展开得$a^2b^2c^2+k(a^2b^2+b^2c^2+c^2a^2)+k^2\left(a^2+b^2+c^2\right)+3k+2\geq\frac{\left(k+1\right)^2}{3}\left(a+b+c\right)^2.$
而$a^2+b^2+c^2+\left(a^2+b^2+c^2+a^2b^2c^2+2\right)\geq a^2+b^2+c^2+2\left(ab+bc+ca\right)=\left(a+b+c\right)^2,$
故只需证$k\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(k^2-2\right)\left(a^2+b^2+c^2\right)+3k\geq\frac{k^2+2k-2}{3}\left(a+b+c\right)^2.$
由$\left(a^2b^2+1\right)+\left(b^2c^2+1\right)+\left(c^2a^2+1\right)\geq2\left(ab+bc+ca\right)$,$a^2+b^2+c^2\geq\frac{\left(a+b+c\right)^2}{3}$和$k^2-k-2=(k+1)(k-2)≥0$推出$k\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(k^2-2\right)\left(a^2+b^2+c^2\right)+3k\geq2k\left(ab+bc+ca\right)+\left(k^2-2\right)\left(a^2+b^2+c^2\right)=\left(k^2-k-2\right)\left(a^2+b^2+c^2\right)+k\left(a+b+c\right)^2\geq\frac{k^2+2k-2}{3}(a+b+c)^2.$
解答者:[越南]阮文惠(Nguyễn Văn Huyện)
k<2时怎么办呢

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit