Forgot password
 Register account
View 946|Reply 5

[不等式] 钝角三角形的不等式

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2021-5-13 21:21 |Read mode
求最大的正实数k,使得对任意钝角三角形的三边a,b,c都有$a^6+b^6+c^6\ge k\cdot a^2b^2c^2$.

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-8-8 00:34
回复 1# hbghlyj


答案是多少?

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-8-12 01:03
回复 2# isee


这小子楼主可能被隔离了,哈哈哈哈哈哈哈

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-8-12 02:56
回复 2# isee

很简单的题啊……不妨设 `c` 为最大边,有
\[a^6+b^6+c^6\geqslant\frac14(a^2+b^2)^3+c^6,\]以及
\[a^2b^2c^2\leqslant\frac14(a^2+b^2)^2c^2,\]故
\[\frac{a^6+b^6+c^6}{a^2b^2c^2}\geqslant\frac{(a^2+b^2)^3+4c^6}{(a^2+b^2)^2c^2}=\frac{1+4t^3}t,\]其中 `t=c^2/(a^2+b^2)>1`,易证上式右边在 `(1,+\infty)` 递增,故
\[\frac{a^6+b^6+c^6}{a^2b^2c^2}>5,\]而当三角形趋向等腰直角三角形时上式左边趋向 `5`,故 `k` 的最大值就是 `5`。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-8-13 22:44
回复  isee

很简单的题啊……不妨设 `c` 为最大边,有
\[a^6+b^6+c^6\geqslant\frac14(a^2+b^2)^3+c^6,\] ...
kuing 发表于 2021-8-12 02:56
哈哈哈哈哈,简单简单第一步就“玩倒”一片

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2021-8-19 17:23
(1+1)(1+1)(a^6+b^6)>=(a^2+b^2)

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:24 GMT+8

Powered by Discuz!

Processed in 0.028445 seconds, 22 queries