Forgot password?
 Register account
View 766|Reply 2

[不等式] 三元轮換不等式求最佳常数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-14 13:21 |Read mode
Last edited by hbghlyj 2021-5-14 14:10a,b,c>k,$a+b+c=3\sqrt2,$求正数k的最小值,使$\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\le27$恒成立.
$k_{\text{max}}=3\sqrt2-2t$≈0.191055,其中t≈2.02579是$16 x^8-8 x^6-183 x^4-224 x^2+16=0$的根:
$t=\sqrt{\frac{1+T+\sqrt{3 \left(S+41\right)}}{8}}$,其中
$S=\sqrt[3]{10817+192 \sqrt{1626}}+\sqrt[3]{10817-192 \sqrt{1626}}$
$T=\sqrt{-3S+720 \sqrt{\frac{3}{S+41}}+246}$
说明一下:令a=b,则$c=3 \sqrt{2}-2 a$,从$\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=27$解出来的a就是上面的t.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-14 14:46
Last edited by hbghlyj 2021-5-14 14:59k=1时有如下错误证明:
设a≥b≥c≥1,s=a+b,t=a-b,则$s≤3\sqrt2-1$,t≥0,由b≥c得$3s-t\geq6\sqrt2$⇒$s\geq2\sqrt2+\frac{t}{3}$⇒$3\sqrt2-1\geq2\sqrt2+\frac{t}{3}$⇒$t\le3\left(\sqrt2-1\right)$⇒$\sqrt{t^2+8}<2\sqrt2+\frac{t}{3}\le s$⇒$s^2-t^2>8$⇒ab≥2.
当xy≥2时有$\left(\left(\frac{x+y}{2}\right)^2+1\right)^2-\left(x^2+1\right)\left(y^2+1\right)=\left(\frac{x-y}{2}\right)^2\left(\left(\frac{x+y}{2}\right)^2+xy-2\right)≥0.$
代入$(x,y)=(a,b),\left(\sqrt2,c
\right),\left(\frac{3\sqrt2-c}{2},\frac{\sqrt2+c}{2}\right)$有
$
\left(\left(\frac{3\sqrt2-c}{2}\right)^2+1\right)^2\geq\left(a^2+1\right)\left(b^2+1\right)$
$
\left(\left(\frac{\sqrt2+c}{2}\right)^2+1\right)^2\geq3\left(c^2+1\right)$
$81\geq\left(\left(\frac{3\sqrt2-c}{2}\right)^2+1\right)^2\left(\left(\frac{\sqrt2+c}{2}\right)^2+1\right)^2$
以上三式相乘即得$\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\le27$
错误:代入$(x,y)=\left(\sqrt2,c\right)$时需要$\sqrt 2 c\ge2$才行,但是c=min(a,b,c),所以$\sqrt 2 c\le2$,这就坏了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-14 15:20
上半半定理吧……

易知 `\ln(x^2+1)` 在 `(0,1)` 内下凸,在 `(1,+\infty)` 内上凸,所以:
如果 `k\geqslant1`,则直接琴生完事;
而当 `k<1` 时,就是先下凸再上凸,
不妨设 `a\leqslant b\leqslant c`,由半凹半凸定理,左边取最大值时,要么 `b=c`,要么 `a=k`,
然后……不想算了……

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit