|
Author |
hbghlyj
Posted 2021-5-14 14:46
Last edited by hbghlyj 2021-5-14 14:59k=1时有如下错误证明:
设a≥b≥c≥1,s=a+b,t=a-b,则$s≤3\sqrt2-1$,t≥0,由b≥c得$3s-t\geq6\sqrt2$⇒$s\geq2\sqrt2+\frac{t}{3}$⇒$3\sqrt2-1\geq2\sqrt2+\frac{t}{3}$⇒$t\le3\left(\sqrt2-1\right)$⇒$\sqrt{t^2+8}<2\sqrt2+\frac{t}{3}\le s$⇒$s^2-t^2>8$⇒ab≥2.
当xy≥2时有$\left(\left(\frac{x+y}{2}\right)^2+1\right)^2-\left(x^2+1\right)\left(y^2+1\right)=\left(\frac{x-y}{2}\right)^2\left(\left(\frac{x+y}{2}\right)^2+xy-2\right)≥0.$
代入$(x,y)=(a,b),\left(\sqrt2,c
\right),\left(\frac{3\sqrt2-c}{2},\frac{\sqrt2+c}{2}\right)$有
$
\left(\left(\frac{3\sqrt2-c}{2}\right)^2+1\right)^2\geq\left(a^2+1\right)\left(b^2+1\right)$
$
\left(\left(\frac{\sqrt2+c}{2}\right)^2+1\right)^2\geq3\left(c^2+1\right)$
$81\geq\left(\left(\frac{3\sqrt2-c}{2}\right)^2+1\right)^2\left(\left(\frac{\sqrt2+c}{2}\right)^2+1\right)^2$
以上三式相乘即得$\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\le27$
错误:代入$(x,y)=\left(\sqrt2,c\right)$时需要$\sqrt 2 c\ge2$才行,但是c=min(a,b,c),所以$\sqrt 2 c\le2$,这就坏了 |
|