Forgot password?
 Register account
View 959|Reply 3

[不等式] 一道三元分式不等式的证明的疑问

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-15 10:37 |Read mode
Last edited by hbghlyj 2021-5-15 12:24arqady的帖子
$ (\frac a{b + c})^2 + (\frac b{c + a})^2 + (\frac c{a + b})^2 + \frac {10abc}{(a + b)(b + c)(c + a)}\ge2$
证:展开得$ \sum_{cyc}(a^6+2a^5b+2a^5c-a^4b^2-a^4c^2-4a^3b^3+a^2b^2c^2)\geq0,$
LHS=$a b c \sum a (a - b) (a - c) + (a + b + c) \sum a^3 (a - b) (a - c) +  2 \sum a b (a^2 - b^2)^2\ge0$
由三次和五次Schur不等式,得证!

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-15 12:26
Last edited by hbghlyj 2021-5-15 13:22can_hang2007的帖子
\[ \Leftrightarrow (p-3)(p^2-16) \le 0\]
which is true since $ 4 \ge p \ge \sqrt{3q} \ge 3$
这个证明应该是正确的. 但我不知道这步为何$ \sqrt{3q} \ge 3$.
------
翻译如下
令$x=\frac{2a}{b+c},\cdots,$则有xy+yz+zx+xyz=4,要证$x^2+y^2+z^2+5xyz\geq8$.令p=x+y+z,q=xy+yz+zx,r=xyz,则q+r=4,要证$p^2-2q+5r\geq8\Leftrightarrow p^2-7q+12\geq0.$
若4≥p,由3次Schur有$r\geq\frac{p(4q-p^2)}{9}\Rightarrow4\geq q+\frac{p(4q-p^2)}{9}\Leftrightarrow q\le\frac{p^3+36}{4p+9}.$只需证$p^2-\frac{7\left(p^3+36\right)}{4p+9}+12\geq0\Leftrightarrow\left(p-3\right)\left(p^2-16\right)\le0$,这是因为$4\geq p\geq\sqrt{3q}\geq3.$
若p≥4,则$p^2\geq16\geq4q⇒p^2-2q+5r\geq p^2-2q\geq\frac{p^2}{2}\geq8.$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-15 13:21
回复 2# hbghlyj

4=q+r<=q+(q/3)^(3/2)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-15 13:24
回复 3# kuing
明白了.
另外,13#dduclam8#的证明是错误的.哪里错了呢?我沒看出来

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit