|
本帖最后由 hbghlyj 于 2023-1-11 22:42 编辑 aops
\[\lim_{n\to\infty}\frac1n\sum_{r=1}^n|\cos r|\]
Theorem: if $f(x)$ is periodic (let's say of period $2\pi$ just for specificity) and continuous, and $t$ is not a rational multiple of $\pi,$ then
\[\lim_{n\to\infty}\frac1n\sum_{r=1}^nf(rt)=\frac1{2\pi}\int_0^{2\pi}f(x)\,dx\]
That theorem applies here. All you need to finish it is to compute the average value of $|\cos x|.$
Here's the plan for the proof.
First we prove this theorem is true for a trigonometric polynomial. That is, if $g(x)=\sum_{k=-m}^mc_ke^{ikx}$ and $T_n(g)=\frac1n\sum_{r=1}^ng(rt),$ then $\lim_{n\to\infty}T_n(g)=\frac1{2\pi}\int_0^{2\pi}g(x)\,dx=c_0.$
Then, we use the fact that the trigonometric polynomials are uniformly dense in $C(\mathbb{T}).$ Given an arbitrary continuous $f$ and a $\epsilon>0,$ write $f=g+b,$ where $g$ is a trig polynomial and $|b(x)|<\epsilon$ for all $x,$ then $\limsup_{n\to\infty}T_n(f)\le\frac1{2\pi}\int_0^{2\pi}g(x)\,dx+\epsilon$ and $\liminf_{n\to\infty}T_n(f)\ge\frac1{2\pi}\int_0^{2\pi}g(x)\,dx-\epsilon$, and $\frac1{2\pi}\int_0^{2\pi}g(x)\,dx$ is within $\epsilon$ of $\frac1{2\pi}\int_0^{2\pi}f(x)\,dx.$
Now, how to we prove this for trig polynomials? Suppose $k\ne 0.$ Then $T_n(e^{ikx})=\frac1n\sum_{r=1}^n e^{ikrt}=\frac1n\cdot\frac{e^{ikt}-e^{ik(n+1)t}}{1-e^{ikt}}.$ Therefore $|T_n(e^{ikx})|\le\frac{2}{n|1-e^{ikt}|},$ The condition that $t$ is not a rational multiple of $\pi$ guarantees that $1-e^{ikt}\ne 0,$ and hence $T_n(e^{ikx})\to 0$ as $n\to\infty.$ It should be clear what to do for $k=0.$ |
|