Forgot password?
 Register account
View 1041|Reply 2

[组合] 小球入盒$\abs{i-j}\le 2$,糊涂了

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2021-5-21 10:26 |Read mode
诸暨市2021年5月高三适应性考试 第16题
编号为i(i=1,2,3,4,5)的五个小球放入编号为j(j=1,2,3,4,5)的五个盒子,每盒一个小球,若满足$\abs{i-j}\le 2$,则不同的放法共有______种.

答案31,可以用分类穷举找出来.当问题推广到n球与盒时,......

试着找递推关系时,把自己整糊涂了.
$f(n)$表示n球n盒时的放法种数.
1.当1号球放在1号盒时(以下简化说成球1盒1),余下球放法有f(n-1)种.
2.当球1盒2,
---(2.1).同时有球2盒1,有f(n-2)种;
---(2.2)若同时有球2盒3,此时盒1只能放3号球了,有f(n-3).
--- (2.3)若同时有球2盒4,此时盒1只能放3号球,
------(2.3.1)球4盒3,有f(n-4).
------(2.3.2)球5盒3,
---------(2.3.2.1)球4盒5,有f(n-5).
---------(2.3.2.2)球4盒6
------------(2.3.2.2.1)没完没了的,甩手不干了????
3.当球1盒3,(3.1)球3盒1,有f(n-2);(3.2.1)球3盒2,球2盒1,f(n-3);(3.2.2)球3盒2,球2盒4,无,因为盒1没法放了

综上,f(n)=f(n-1)+2f(n-2)+2f(n-3)+f(n-4)+f(n-5)+...(此处省略号会出问题吗?),
又f(1)=1,f(2)=2,f(3)=6,f(4)=14,f(5)=31,f(k)=0,$k\le0$.

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2021-5-22 04:52
Last edited by tommywong 2021-5-22 05:01oeis.org/A002524
Number of permutations of length n within distance 2 of a fixed permutation.

$f(n)=2f(n-1)+2f(n-3)-f(n-5)$

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2021-5-22 13:02
f:XXX?????...
1,1,2,6,14,31,73
g:XXX?X???...
0,1,2,4,10,24,55

(2.3) 31?2???..., 有g(n-3)
(2.3.2.2) 3152?4???..., 有g(n-5)

(3.1) 3?1???..., 唔係f(n-2)
(3.1.1) 321???..., 有f(n-3)
(3.1.2) 3412???..., 有f(n-4)
(3.3) 2413???..., 有f(n-4)
(3.4) 241?3???..., 有g(n-4)

f(n)=f(n-1)+f(n-2)+3f(n-3)+2f(n-4)+g(n-3)+g(n-4)
g(n-3)=f(n-4)+f(n-5)+g(n-5)

f(n)=f(n-1)+f(n-2)+3f(n-3)+2f(n-4)+g(n-3)+g(n-4)
f(n-1)=f(n-2)+f(n-3)+3f(n-4)+2f(n-5)+g(n-4)+g(n-5)
f(n)-f(n-1)=f(n-1)+2f(n-3)-f(n-4)-2f(n-5)+g(n-3)-g(n-5)
f(n)=2f(n-1)+2f(n-3)-f(n-5)

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit