Forgot password?
 Register account
View 1005|Reply 1

[几何] 折起,多面体

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2021-5-21 23:47 |Read mode
折起,多面体.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-22 13:53
Last edited by hbghlyj 2021-5-22 14:40答案:①②③④.
解:长、宽分别为$2\sqrt2a$,2a,A,B,C,D分别是其四条边的中点,现将其沿图中虚线折起,使得$P_1,P_2,P_3,P_4$四点重合为一点P,从而得到一个多面体,则

①由于$(\sqrt{2} a)^{2}+(\sqrt{2} a)^{2}=4 a^{2}$
∴该多面体是以A,B,C,D为顶点的三棱锥,正确;
②∵AP⊥BP,AP⊥CP,
∴AP⊥平面BCD.
∵AP⊂平面BAD,
∴平面BAD⊥平面BCD,正确;
③与②同理,可得平面BAC⊥平面ACD,正确;
④该多面体外接球的半径为$\frac{\sqrt5}2a$,表面积为5π$a^2$,正确.
故答案为①②③④.
来自题拍拍,我未做任何改动,此答案仅供参考,可能有误.

330px-1919_Political_Cartoon_(14759129762)_(cropped).jpg

Mobile version|Discuz Math Forum

2025-5-31 11:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit