Forgot password
 Register account
View 584|Reply 1

一类反正切的含参积分

[Copy link]
青青子衿 posted 2021-5-24 09:11 |Read mode
Last edited by 青青子衿 2021-5-24 10:00\begin{align*}
\int^{+\infty}_{0}\,\frac{\arctan{x}}{x(a^2+x^2)}\mathrm{d}x&=\frac{\pi\ln(1+a)}{2a^2}\\
\int^{+\infty}_{0}\,\frac{\arctan{x}}{x(a^2+x^2)^2}\mathrm{d}x&=\frac{\pi\left[2(1+a)\ln(1+a)-a\right]}{4a^4(1+a)}\\
\end{align*}
Table of Integrals, Series, and Products (8th Edition)
Ch. 4.537  P. 607

3219

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-3-18 09:03

留数

\[\frac{1}{2}\int^\infty_{-\infty}\frac{\arctan{x}}{x(a+x^2)}\ {\rm d}x=-\Re\pi \operatorname*{Res}_{z=i\sqrt{a}}\frac{\ln(1-iz)}{z(z^2+a)}=\frac{\pi\ln(1+\sqrt{a})}{2a}\]MSE

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:11 GMT+8

Powered by Discuz!

Processed in 0.014052 seconds, 23 queries