Forgot password?
 Create new account
View 474|Reply 1

一类反正切的含参积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2021-5-24 09:11:01 |Read mode
Last edited by 青青子衿 at 2021-5-24 10:00:00\begin{align*}
\int^{+\infty}_{0}\,\frac{\arctan{x}}{x(a^2+x^2)}\mathrm{d}x&=\frac{\pi\ln(1+a)}{2a^2}\\
\int^{+\infty}_{0}\,\frac{\arctan{x}}{x(a^2+x^2)^2}\mathrm{d}x&=\frac{\pi\left[2(1+a)\ln(1+a)-a\right]}{4a^4(1+a)}\\
\end{align*}
Table of Integrals, Series, and Products (8th Edition)
Ch. 4.537  P. 607

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-3-18 09:03:39

留数

\[\frac{1}{2}\int^\infty_{-\infty}\frac{\arctan{x}}{x(a+x^2)}\ {\rm d}x=-\Re\pi \operatorname*{Res}_{z=i\sqrt{a}}\frac{\ln(1-iz)}{z(z^2+a)}=\frac{\pi\ln(1+\sqrt{a})}{2a}\]MSE

手机版Mobile version|Leisure Math Forum

2025-4-21 14:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list