Forgot password?
 Register account
View 1779|Reply 14

[几何] 三道平几题

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-30 02:38 |Read mode
新建位图图像.jpg
如图,△ABC是等腰直角三角形,AB=AC=1,
作正△ABD,E是BC上一点,△DEA~△AEF.
求CF的长.
新建位图图像.jpg

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-2 02:02
先上一引理:
如图: 211.png
$ AC,BD $为园上两相交弦,交点为$ P $,$ E,F $分别为不相邻弦上两点。$ M,N $分别为$ BE $与$ AF $,$ EC $与$ DF $的交点,则有$ MPN $三点共线。(但不知道如何证明)
  见图 212.png
由引理知$ \triangle DBP $为等腰三角形且\[ DP=DB \]取$ EF'=EF $得\[ \triangle DQP\cong \triangle DF'A\riff DQ=DF' \]作等腰$ \triangle ADM $,顶角$ \angle ADM=30\du  $。有\[ \triangle BDQ\cong \triangle MDF'\riff MF'=BQ=AB \]令$ \angle ADE=\angle 1,\angle AED=\angle 2 $,有\[ \angle AF'M=\angle AF'D-\angle MF'D=\angle 1+\angle 2-(90\du -\angle BDF' )=\angle 1+\angle 2-(90\du -60\du +\angle 1)=\angle 2-30\du \]又\[\angle FAC=\angle DAC-\angle DAE-\angle EAF=150\du -(180\du -\angle 1-\angle 2)-\angle 1=\angle 2-30\du  \]所以\[ \triangle AF'M\cong \triangle FAC \\\riff CF=AM=\sqrt{2-\sqrt{3}} \]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-2 02:24
楼主,这真是初中的平几题吗?贴出答案看看!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-6-2 08:47
回复 3# 乌贼


    一看就是竞赛级别的,所以,没啥奇怪的,至于标答,楼主也不一定有

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-2 11:59
回复 3# 乌贼
这些题是从一个竞赛Q群转来的,我也没有答案
与几何共舞795472143欢迎加入

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-2 12:00
引理好像是Pascal定理

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-2 12:53
真是isee说的竞赛题,没想到有pascal定理

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-2 12:56
pascal定理链接:zhuanlan.zhihu.com/p/62085051

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2021-6-2 14:43
我昨天用几何画板试了下,发现点F在以C为圆心的一个圆上,因为有等边三角形和等腰直角三角形两个旋转大户,以为是很巧妙的旋转题目。不想这么复杂。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-3 13:01

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-4 02:42
再补一道(也是从5#的q群转来的)
QQ图片20210602123820.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-4 02:49
这个题的图有两种情况,因为点N有两个位置:
Screenshot 2021-06-01 221649.png Screenshot 2021-06-01 221649.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-6 05:52
想绕开pascal定理,没想到又碰到一引理(不知是否也是定理),先上图……
213.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-6-6 23:40
第一题既然几天都还没简单的几何法,那我就撸个复数法吧,计算量并不大,也是个8错嘀选择

由于懒,直接以字母表示该点对应的复数。
捕获.PNG
如图,建系使 `C` 为原点且 `A=i`,则
\[D=-\frac12+\left( 1+\frac{\sqrt3}2 \right)i,\]由 `E` 在 `BC` 上可设 `E=x-xi`(`x\inR`),由相似得
\[F-E=\frac{(A-E)^2}{D-E},\]故
\[F=E+\frac{(i-E)^2}{D-E}=\frac{-1+(D-2i)E}{D-E},\]代入那些式子计算出
\begin{align*}
-1+(D-2i)E&=-1+\frac{-3+\sqrt3}2x+\frac{-1+\sqrt3}2xi,\\
D-E&=-\frac12-x+\left( 1+\frac{\sqrt3}2+x \right)i,
\end{align*}故
\begin{align*}
\abs F&=\frac{\abs{-1+(D-2i)E}}{\abs{D-E}}\\
&=\sqrt{\frac{\left( -1+\frac{-3+\sqrt3}2x \right)^2+\left( \frac{-1+\sqrt3}2x \right)^2}{\left( -\frac12-x \right)^2+\left( 1+\frac{\sqrt3}2+x \right)^2}}\\
&=\sqrt{2-\sqrt3}.
\end{align*}

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-10-27 04:27
Last edited by 乌贼 2021-10-27 13:08回复 14# kuing
如图: 214.png
$ \triangle AEF $交$ DE $于点$ P $,作等腰三角形$ DAO $,且$ \angle DAO=30\du ,AD=AO $。有\[  AP=AF \]\[  \triangle ADP\sim \triangle EDA\riff DB^2=AD^2=DP\cdot DE\riff\triangle PDB\sim \triangle BDE\riff \angle DPB=\angle DBE=105\du  \]知$ O $点即为$ \triangle DBP $的外接圆圆心,且\[ OP=\sqrt{2-\sqrt{3}} \]又\[ \angle OAP=\angle DAP-30\du =\angle CAF \]所以\[ \triangle OAP\cong \triangle CAF\riff CF=OP=\sqrt{2-\sqrt{3}} \]

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit