Forgot password?
 Create new account
View 2121|Reply 25

[不等式] a+b=1,求$\frac{8}{a^2}+\frac{1}{b^2}$的最小值

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2021-5-31 15:02:42 |Read mode
a+b=1,求$\frac{8}{a^2}+\frac{1}{b^2}$的最小值.27,$a=\frac{2}{3}$
做得好丑,令$t=\frac{b}{a},\frac{8}{a^2}+\frac{1}{b^2}=(\frac{8}{a^2}+\frac{1}{b^2})(a+b)^2=8(t^2+2t+1)+(\frac{1}{t^2}+\frac{1}{t}+1)$,然后求导.
  

有没直接用不等式,2,3下到位的.

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2021-5-31 15:06:42
你竟然不会权方和(or holder),不用两三下,只要一下……

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2021-5-31 15:11:35
回复 2# kuing


thanks   ,不太用,偶尔来一下,我去搜搜

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2021-5-31 15:15:35
回复 1# realnumber
权方和:
$\frac{2^3}{a^2}+\frac{1^3}{b^2}\ge\frac{(2+1)^3}{(a+b)^2}=27$

Holder:
$(a+b)^{\frac23}\left(\frac8{a^2}+\frac1{b^2}\right)^{\frac13}\ge a^{\frac 23}\left(\frac8{a^2}\right)^{\frac13}+b^{\frac 23}\left(\frac1{b^2}\right)^{\frac13}=3$

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 holder原来 这样用,明白了

View Rating Log

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-5-31 19:18:15
Last edited by isee at 2021-5-31 19:28:00
你竟然不会权方和(or holder),不用两三下,只要一下……
kuing 发表于 2021-5-31 15:06

我见到名字,见到的例题太复杂,估计没有一秒就走人了

今天见了4#,哎哎哎,这就是柯西加强啊,哦,原来这就是权方和不等式,好用好用

=========

记起来一点点,曾写过 holder 不等式,不过,忘记了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2021-6-4 21:52:40
a+b=1,求$\dfrac{8}{a^2}+\dfrac{1}{b^2}$的最小值.27,$a=\dfrac{2}{3}$
做得好丑,令$t=\dfrac{b}{a},\dfrac{8}{a^2}+\dfrac{1}{b^2}=(\dfrac{8}{a^2}+\dfrac{1}{b^2})(a+b)^2=8(t^2+2t+1)+(\dfrac{1}{t^2}+\dfrac{1}{t}+1)$
realnumber 发表于 2021-5-31 15:02

好吧。那我就来两下
$\dfrac{8}{a^2}+18+\dfrac{1}{b^2}+9$$\geqslant2\sqrt{\dfrac{8}{a^2}\cdot 18+}+2\sqrt{\dfrac{1}{b^2}\cdot9}$=$\dfrac{24}{a}+\dfrac{6}{b}\geqslant\dfrac{(2\sqrt6+\sqrt6)^2}{a+b}=54$,
两边减去27得,$\dfrac{8}{a^2}+\dfrac{1}{b^2}\geqslant27$.
还可以连续两次柯西不等式的,有空再写。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-6-4 22:47:15
回复 6# 其妙


    代码进步了,就是\dfrac 用得用点乱,用 \frac 就好,展示模式,即双美元开头,又美元结尾

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-7-11 16:51:50
好吧。那我就来两下

...还可以连续两次柯西不等式...
其妙 发表于 2021-6-4 21:52

你这个坑,坑了了好半天,是指,其中为了书写方便,记`x^2=\frac 1{\sqrt 3}`:
\[\left(\frac 23+\frac 13\right)\left(\frac 8{a^2}+\frac 1{b^2}\right)\geqslant \left(\frac {4x^2}{a}+\frac {x^2}b\right)^2\geqslant=\left(\frac {9x^2}{a+b}\right)^2=27,\]这个样子么?

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2021-8-1 22:42:20
我见到名字,见到的例题太复杂,估计没有一秒就走人了

今天见了4#,哎哎哎,这就是柯西加强啊,哦,原来这就是权方和不等式,好用好用 ...
isee 发表于 2021-5-31 19:18
网友问我一道题,给你来练习:
-4233bd2584b55ea.png
这名字我喜欢

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-3 00:16:27
回复 9# 色k


    用权方和不等式?

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2021-8-3 00:27:31
回复 10# isee

引用你那段,当然是有这层意思咯快试试吧

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-3 00:32:32
回复 11# kuing


叩,问你的题会有简单的,再说再说

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2021-8-3 00:36:40
回复 12# isee

不简单的我就自己写啦,送你练习不会难嘀……加上都提示你思路了……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-3 01:00:02
回复 13# kuing


    这样子\[\cdots=\frac 8x+\frac 6{2y}\geqslant \frac {\left(4+6^{2/3}\right)^{3/2}}{\sqrt{x^2+4y^2}}?\]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-3 01:13:28
回复 14# isee

应该就是这样,这个次数用起来真灵活,只是这个结果太奇怪了

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-3 01:28:15
回复 1# realnumber

改下主楼题:`a,b>0`且`a^2+b^2=1`,则`\frac 8a+\frac 1b`的最小值为_`5\sqrt 5`_.

果然不等式都是坑,入不得,闪了闪了,睡觉~

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2021-8-3 02:15:23
回复 15# isee

结果怪才好,没得蒙答案

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-3 09:31:20
回复 17# 色k


挺好的,感到权方和不等式的美了,多谢

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2021-8-3 16:39:19
你这个坑,坑了了好半天,是指,其中为了书写方便,记`x^2=\frac 1{\sqrt 3}`:
\[\left(\frac 23+\frac  ...
isee 发表于 2021-7-11 16:51

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2021-8-3 16:40:25
网友问我一道题,给你来练习:
色k 发表于 2021-8-1 22:42
改为这个数据更好,
QQ截图20210711223232.png
妙不可言,不明其妙,不着一字,各释其妙!

手机版Mobile version|Leisure Math Forum

2025-4-22 12:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list