Forgot password?
 Register account
View 2374|Reply 25

[不等式] a+b=1,求$\frac{8}{a^2}+\frac{1}{b^2}$的最小值

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2021-5-31 15:02 |Read mode
a+b=1,求$\frac{8}{a^2}+\frac{1}{b^2}$的最小值.27,$a=\frac{2}{3}$
做得好丑,令$t=\frac{b}{a},\frac{8}{a^2}+\frac{1}{b^2}=(\frac{8}{a^2}+\frac{1}{b^2})(a+b)^2=8(t^2+2t+1)+(\frac{1}{t^2}+\frac{1}{t}+1)$,然后求导.
  

有没直接用不等式,2,3下到位的.

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2021-5-31 15:06
你竟然不会权方和(or holder),不用两三下,只要一下……

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2021-5-31 15:11
回复 2# kuing


thanks   ,不太用,偶尔来一下,我去搜搜

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2021-5-31 15:15
回复 1# realnumber
权方和:
$\frac{2^3}{a^2}+\frac{1^3}{b^2}\ge\frac{(2+1)^3}{(a+b)^2}=27$

Holder:
$(a+b)^{\frac23}\left(\frac8{a^2}+\frac1{b^2}\right)^{\frac13}\ge a^{\frac 23}\left(\frac8{a^2}\right)^{\frac13}+b^{\frac 23}\left(\frac1{b^2}\right)^{\frac13}=3$

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 holder原来 这样用,明白了

View Rating Log

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-5-31 19:18
Last edited by isee 2021-5-31 19:28
你竟然不会权方和(or holder),不用两三下,只要一下……
kuing 发表于 2021-5-31 15:06

我见到名字,见到的例题太复杂,估计没有一秒就走人了

今天见了4#,哎哎哎,这就是柯西加强啊,哦,原来这就是权方和不等式,好用好用

=========

记起来一点点,曾写过 holder 不等式,不过,忘记了

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2021-6-4 21:52
a+b=1,求$\dfrac{8}{a^2}+\dfrac{1}{b^2}$的最小值.27,$a=\dfrac{2}{3}$
做得好丑,令$t=\dfrac{b}{a},\dfrac{8}{a^2}+\dfrac{1}{b^2}=(\dfrac{8}{a^2}+\dfrac{1}{b^2})(a+b)^2=8(t^2+2t+1)+(\dfrac{1}{t^2}+\dfrac{1}{t}+1)$
realnumber 发表于 2021-5-31 15:02
好吧。那我就来两下
$\dfrac{8}{a^2}+18+\dfrac{1}{b^2}+9$$\geqslant2\sqrt{\dfrac{8}{a^2}\cdot 18+}+2\sqrt{\dfrac{1}{b^2}\cdot9}$=$\dfrac{24}{a}+\dfrac{6}{b}\geqslant\dfrac{(2\sqrt6+\sqrt6)^2}{a+b}=54$,
两边减去27得,$\dfrac{8}{a^2}+\dfrac{1}{b^2}\geqslant27$.
还可以连续两次柯西不等式的,有空再写。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-6-4 22:47
回复 6# 其妙


    代码进步了,就是\dfrac 用得用点乱,用 \frac 就好,展示模式,即双美元开头,又美元结尾

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-7-11 16:51
好吧。那我就来两下

...还可以连续两次柯西不等式...
其妙 发表于 2021-6-4 21:52

你这个坑,坑了了好半天,是指,其中为了书写方便,记`x^2=\frac 1{\sqrt 3}`:
\[\left(\frac 23+\frac 13\right)\left(\frac 8{a^2}+\frac 1{b^2}\right)\geqslant \left(\frac {4x^2}{a}+\frac {x^2}b\right)^2\geqslant=\left(\frac {9x^2}{a+b}\right)^2=27,\]这个样子么?

13

Threads

901

Posts

110K

Credits

Credits
12272

Show all posts

色k Posted 2021-8-1 22:42
Last edited by hbghlyj 2025-4-23 13:15
我见到名字,见到的例题太复杂,估计没有一秒就走人了

今天见了4#,哎哎哎,这就是柯西加强啊,哦,原来这就是权方和不等式,好用好用 ...
isee 发表于 2021-5-31 19:18
网友问我一道题,给你来练习:
已知:正数 $x, y$ 满足 $6 x y \sqrt{x^2+4 y^2}=3 x+8 y$ ,则 $x^2+4 y^2$ 的最小值为:

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 00:16
回复 9# 色k


    用权方和不等式?

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2021-8-3 00:27
回复 10# isee

引用你那段,当然是有这层意思咯快试试吧

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 00:32
回复 11# kuing


叩,问你的题会有简单的,再说再说

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2021-8-3 00:36
回复 12# isee

不简单的我就自己写啦,送你练习不会难嘀……加上都提示你思路了……

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 01:00
回复 13# kuing


    这样子\[\cdots=\frac 8x+\frac 6{2y}\geqslant \frac {\left(4+6^{2/3}\right)^{3/2}}{\sqrt{x^2+4y^2}}?\]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 01:13
回复 14# isee

应该就是这样,这个次数用起来真灵活,只是这个结果太奇怪了

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 01:28
回复 1# realnumber

改下主楼题:`a,b>0`且`a^2+b^2=1`,则`\frac 8a+\frac 1b`的最小值为_`5\sqrt 5`_.

果然不等式都是坑,入不得,闪了闪了,睡觉~

13

Threads

901

Posts

110K

Credits

Credits
12272

Show all posts

色k Posted 2021-8-3 02:15
回复 15# isee

结果怪才好,没得蒙答案

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 09:31
回复 17# 色k


挺好的,感到权方和不等式的美了,多谢

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2021-8-3 16:39
你这个坑,坑了了好半天,是指,其中为了书写方便,记`x^2=\frac 1{\sqrt 3}`:
\[\left(\frac 23+\frac  ...
isee 发表于 2021-7-11 16:51

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2021-8-3 16:40
Last edited by hbghlyj 2025-4-23 13:15
网友问我一道题,给你来练习:
色k 发表于 2021-8-1 22:42
改为这个数据更好,
\begin{aligned} & x, y>0, x y \sqrt{7\left(x^2+3 y^2\right)}=3 x+8 y, \text { 求 }\left(x^2+3 y^2\right)_{\text {min }} \\ & \text { 解: 由条件知 } 7\left(x^2+3 y^2\right)^2=\left(\frac{8}{x}+\frac{3}{y}\right)^2\left(x^2+3 y^2\right) \geqslant(4+3)^3, \\ & \text { 故 } x^2+3 y^2 \geqslant 7, \text { 当 } x=2, y=1 \text { 取等. }\end{aligned}
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-6-6 16:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit