Forgot password?
 Register account
View 1085|Reply 10

[几何] 三角形中,与内心相关的最大值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2021-6-1 17:12 |Read mode
在$\triangle ABC$中,$BC=a,AB=c,AC=b$,若$D$是内心,且$CD=d$,过点$D$的直线交$AC,BC$于点$E,F$.请问$CE\cdot CF$有没有最大值,若有,最大值是多少?
60101.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-1 17:54
Last edited by hbghlyj 2021-6-1 19:02CE=x,CF=y,∠DCE=α,则$\frac{\sin{α}}x+\frac{\sin{α}}y=\frac{\sin{2α}}{d}$,即$\frac1x+\frac1y=\frac{2\cos{α}}{d}$
xy=k,则$\frac{x}{k}+\frac1x=\frac{2\cos{α}}{d}$
$xy\ge\frac{d^2}{\cos^2{α}}$

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-6-1 18:02
回复 2# hbghlyj
这个是最小值呀

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-1 18:06
Last edited by hbghlyj 2021-6-1 19:01回复 3# lemondian
从$\frac{x}{k}+\frac1x=\frac{2\cos{α}}{d}$发现,当$x\to+\infty$时,$k\to+\infty$,所以没有最大值

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-6-1 18:35
回复 4# hbghlyj
问题是:x最大是b,y最大是a,会不会$E,F$其中一个与顶点$A,B$重合时有最大值?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-1 18:57
Last edited by hbghlyj 2021-6-2 00:42回复 5# lemondian
设x<y,则$x<\sqrt k$,关于x的函数$\frac{x}{k}+\frac1x$严格下降,当x$>\frac{k}a$时$\frac{x}{k}+\frac1x=\frac{2\cos{\alpha}}d<\frac 1a+\frac ak$,即$k<\frac a{\frac{2\cos{α}}d-\frac 1a}$,当y=a时取等.
设x>y,同理可得$k<\min{\frac b{\frac{2\cos{α}}{d}-\frac{1}{b}}}$,当x=b时取等.
所以k的最大值是$\max\left\{\frac a{\frac{2\cos{α}}{d}-\frac{1}{a}},\frac b{\frac{2\cos{α}}{d}-\frac{1}{b}}\right\}$
---------
原回答
Screenshot 2021-06-02 004017.png

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-6-1 23:43
回复 6# hbghlyj
当$x\in(\frac{k}a,b)$时,$\frac{x}{k}+\frac1x=\frac{2\cos{α}}{d}<\frac{1}{a}+\frac ak$
这个地方不明白:当$x\in(\frac{k}a,b)$时,有$x<\sqrt k$吗?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-2 00:21
哦哦.我改一下.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-2 00:43
回复 7# lemondian
回复 7# lemondian
现在还有漏洞吗

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-6-2 08:34
回复 9# hbghlyj
谢谢,但有个地方还是弄不明白!
我自已想了一下,我的思路是这样的
因为$0<x\leqslant b,0<y\leqslant a,且xy=k<ab$,
当$x<y$时,有$2y>x+y>2\sqrt{xy}=2\sqrt{k}$,
从而有$y>\sqrt{k},x<\sqrt{k}$.
令$f(x)=\dfrac{x}{k}+\dfrac{1}{x},$则$f'(x)=\dfrac{1}{k}-\dfrac{1}{x^2}$,故可得$f(x)$在$(0,\sqrt{k})$递减,在$(\sqrt{k},b)$递增。
**************************************
然后,你所写的
当$x>\frac{k}a$时,$\frac{x}{k}+\frac1x=\frac{2\cos{α}}{d}<\frac{1}{a}+\frac ak$.
我不明白的是为什么:$x>\frac{k}a$-->这个范围从何而来的?它与上面的单调区间有什么关系呢?
不知道我表达得够清楚了没?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-6-2 08:55
回复 10# lemondian
是不是这样:
因为$y=\dfrac{k}{x}\leqslant a$,
所以$x\geqslant \dfrac{k}{a}$,
但问题又来了:为什么是$x>\frac{k}a$时,就有$\frac{x}{k}+\frac1x=\frac{2\cos{α}}{d}<\frac{1}{a}+\frac ak$?
这个$x>\frac{k}a$与$f(x)$的单调区间有什么关系?

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit