Forgot password?
 Register account
View 727|Reply 2

[几何] $\cos (A-B)\cos (B-C)\cos (C-A)=1$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-6-2 20:12 |Read mode
Last edited by isee 2021-6-2 21:49在三角形$\triangle ABC$中,有$\cos (A-B)\cos (B-C)\cos (C-A)=1$,判断此三角形的形状。

个人肯定是写复杂了,似乎用有界性要分类讨论,说不太清的感觉。

直接积化和差

\begin{gather*}
\cos (A-B)\cos (B-C)\cos (C-A)\\[1ex]
=\frac 12(\cos(A-C)+\cos (A+C-2B))\cos (C-A)\\[1ex]
=\frac 12(\cos^2(A-C)+\cos (A+C-2B)\cos (C-A))\\[1ex]
=\frac 12\left(\cos^2(A-C)+\frac 12\cos (2C-2B)+\frac 12\cos (2A-2B)\right)\\[1ex]
=\frac 12\left(1-\sin^2(A-C)+\frac 12(1-2\sin^2(C-B)+\frac 12(1-2\sin^2(A-B)\right)=1\\[1ex]
\therefore 2-\sin^2(A-C)-\sin^2(C-B)-\sin^2(A-B)=2\\[1ex]
\therefore \sin^2(A-C)+\sin^2(C-B)+\sin^2(A-B)=0\\[1ex]
\therefore \sin^2(A-C)=\sin^2(C-B)=\sin^2(A-B)=0
\end{gather*}

下略

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2021-6-2 20:25
???三个(-1,1]内的数的乘积为1,只能三个都是1啊

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-6-2 21:04
回复 2# 爪机专用

嗯,不过有“部分”始终纠每个积的每个角的范围

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit