Forgot password?
 Register account
View 968|Reply 4

[几何] 原创一道数量积与模长混合的向量题

[Copy link]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-6-4 22:02 |Read mode
平行四边.png
欢迎提供多种解法
妙不可言,不明其妙,不着一字,各释其妙!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2021-6-7 22:54
回复 1# 其妙
这道题大家都不感兴趣呀?难道是一道错题?

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-2-18 10:50
Last edited by 走走看看 2022-3-28 12:51转录解答在此:toutiao.com/w/a1714376411748372/?log_from=ac1 … 92e988_1644473319269

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-28 12:55
Last edited by 走走看看 2022-3-28 21:46回复 2# 其妙

解答同一道题目,最好能够前后统一,有一个基准,比如,$\vv{c}=(2,0)$。

最大值时,
$\vv{a}=(\frac{7}{3},\frac{4\sqrt{5}}{3}),\vv{b}=(\frac{14}{3},-\frac{4\sqrt{5}}{3}),\vv{c}=(2,0)$。

最小值时
$\vv{a}=(-1,0),\vv{b}=(-2,0),\vv{c}=(2,0)$。

回头给出一个过程。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-28 21:24
Last edited by 走走看看 2022-3-30 22:38把$|\vv{a}-\vv{c}|=3,|\vv{b}-\vv{c}|=4$分别平方并相加,把其中的一个$\vv{c}^2$换成$2\vv{a}\vv{b}$。

\begin{align*}
\vv{a}^2-2\vv{a}\vv{c}+\vv{c}^2+\vv{b}^2-2\vv{b}\vv{c}+\vv{c}^2&=25   \\
\vv{a}^2+\vv{b}^2+\vv{c}^2-2\vv{a}\vv{c}-2\vv{b}\vv{c}+2\vv{a}\vv{b}&=25  \\
(\vv{a}+\vv{b}-\vv{c})^2&=25 \\
|\vv{a}+\vv{b}-\vv{c}|&=5 \\
|\vv{a}^2+\vv{b}-\vv{c}|-|\vv{c}|≤& |\vv{a}+\vv{b}|≤|\vv{a}^2+\vv{b}-\vv{c}|+|\vv{c}|\\
3≤ &|\vv{a}^2+\vv{b}|≤7\\
\end{align*}

下面考察取等条件:当$\vv{a}^2+\vv{b}-\vv{c}$与$\vv{c}$方向相同时,取得最大值;方向相反时,取得最小值。

很显然,若设定$\vv{c}=(2,0)$,那么$\vv{a}+\vv{b}$必然在y上的分量和为0,因此可设$\vv{a}=(x_1,m),\vv{b}=(x_2,-m)$

代入已知条件得到:

\begin{cases} x_1x_2-m^2=2    ①  \\ (x_1-2)^2+m^2=9    ②\\ (x_2-2)^2+m^2=16  ③\end{cases}

解得:
\begin{cases}x_1=\frac{7}{3}或x_1=-1  \\ x_2=\frac{14}{3}或x_2=-2\\ m=\frac{4\sqrt{5}}{3}或m=0\end{cases}


最大值时,$\vv{a}=(\frac{7}{3},\frac{4\sqrt{5}}{3}),\vv{b}=(\frac{14}{3},-\frac{4\sqrt{5}}{3}),\vv{c}=(2,0)$。

最小值时,$\vv{a}=(-1,0),\vv{b}=(-2,0),\vv{c}=(2,0)$。

Mobile version|Discuz Math Forum

2025-6-1 19:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit