Last edited by 走走看看 2022-3-30 22:38把$|\vv{a}-\vv{c}|=3,|\vv{b}-\vv{c}|=4$分别平方并相加,把其中的一个$\vv{c}^2$换成$2\vv{a}\vv{b}$。
\begin{align*}
\vv{a}^2-2\vv{a}\vv{c}+\vv{c}^2+\vv{b}^2-2\vv{b}\vv{c}+\vv{c}^2&=25 \\
\vv{a}^2+\vv{b}^2+\vv{c}^2-2\vv{a}\vv{c}-2\vv{b}\vv{c}+2\vv{a}\vv{b}&=25 \\
(\vv{a}+\vv{b}-\vv{c})^2&=25 \\
|\vv{a}+\vv{b}-\vv{c}|&=5 \\
|\vv{a}^2+\vv{b}-\vv{c}|-|\vv{c}|≤& |\vv{a}+\vv{b}|≤|\vv{a}^2+\vv{b}-\vv{c}|+|\vv{c}|\\
3≤ &|\vv{a}^2+\vv{b}|≤7\\
\end{align*}
下面考察取等条件:当$\vv{a}^2+\vv{b}-\vv{c}$与$\vv{c}$方向相同时,取得最大值;方向相反时,取得最小值。
很显然,若设定$\vv{c}=(2,0)$,那么$\vv{a}+\vv{b}$必然在y上的分量和为0,因此可设$\vv{a}=(x_1,m),\vv{b}=(x_2,-m)$
代入已知条件得到:
\begin{cases} x_1x_2-m^2=2 ① \\ (x_1-2)^2+m^2=9 ②\\ (x_2-2)^2+m^2=16 ③\end{cases}
解得:
\begin{cases}x_1=\frac{7}{3}或x_1=-1 \\ x_2=\frac{14}{3}或x_2=-2\\ m=\frac{4\sqrt{5}}{3}或m=0\end{cases}
最大值时,$\vv{a}=(\frac{7}{3},\frac{4\sqrt{5}}{3}),\vv{b}=(\frac{14}{3},-\frac{4\sqrt{5}}{3}),\vv{c}=(2,0)$。
最小值时,$\vv{a}=(-1,0),\vv{b}=(-2,0),\vv{c}=(2,0)$。
|