Forgot password?
 Register account
View 786|Reply 2

[几何] 两正方形求证顶点距离平方和等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-7 04:43 |Read mode
ABCD,EFGH是同向正方形,求证\[AE^2-BF^2+CG^2-DH^2=0\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-6-7 14:48
设两正方形的中心分别为 `O_1`, `O_2`,并记 `AO_1=a`, `EO_2=b`, `O_1O_2=c`,则
\begin{align*}
AE^2&=\bigl(\vv{AO_1}+\vv{O_1O_2}+\vv{O_2E}\bigr)^2\\
&=a^2+b^2+c^2+2\vv{AO_1}\cdot\vv{O_2E}+2\vv{O_1O_2}\cdot\bigl(\vv{AO_1}+\vv{O_2E}\bigr),
\end{align*}其余同理,故
\begin{align*}
&\frac{AE^2-BF^2+CG^2-DH^2}2\\
={}&\vv{AO_1}\cdot\vv{O_2E}-\vv{BO_1}\cdot\vv{O_2F}+\vv{CO_1}\cdot\vv{O_2G}-\vv{DO_1}\cdot\vv{O_2H}\\
&+\vv{O_1O_2}\cdot\bigl(\vv{AO_1}+\vv{O_2E}-\vv{BO_1}-\vv{O_2F}+\vv{CO_1}+\vv{O_2G}-\vv{DO_1}-\vv{O_2H}\bigr),\\
={}&\vv{AO_1}\cdot\vv{O_2E}-\vv{BO_1}\cdot\vv{O_2F}+\vv{CO_1}\cdot\vv{O_2G}-\vv{DO_1}\cdot\vv{O_2H},
\end{align*}由于 `\vv{BO_1}` 和 `\vv{O_2F}` 分别为 `\vv{AO_1}` 和 `\vv{O_2E}` 同方向旋转 `90\du` 而来,故必有 `\vv{AO_1}\cdot\vv{O_2E}=\vv{BO_1}\cdot\vv{O_2F}`,同理 `\vv{CO_1}\cdot\vv{O_2G}=\vv{DO_1}\cdot\vv{O_2H}`,从而得出 `AE^2-BF^2+CG^2-DH^2=0`。

而且由上述证明可以发现,两个正方形其实可以改成两个相似的矩形,结论同样成立。
QQ截图20210607150744.png
这样一来,这命题就可以看作是“`PA^2+PC^2=PB^2+PD^2`”这个结论的推广了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-6-7 15:32
回复 2# kuing


这些题风格夸度颇大,你切换自如啊,

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit