|
Author |
hbghlyj
Posted 2021-6-7 18:05
直接计算重心坐标应很简单
所以$P_1Q_1,P_2Q_2,P_3Q_3$的方程为$$ \left(h_{1}+a_{1}\right) \mu_{1}+a_{1} \mu_{2}+a_{1} \mu_{3}=0 $$$$ a_{2} \mu_{1}+\left(h_{2}+a_{2}\right) \mu_{2}+a_{2} \mu_{3}=0 $$$$ a_{3} \mu_{1}+a_{3} \mu_{2}+\left(h_{3}+a_{3}\right) \mu_{3}=0 $$其中,$h_1,h_2,h_3$分别表示各对应边上的高,据此可求出$P_2Q_2,P_3Q_3$交点$B_1$的坐标$$ B_{1}=\left(h_{2} h_{3}+a_{2} h_{3}+a_{3} h_{2}:-a_{2} h_{3}:-a_{3} h_{2}\right) $$于是直线$B_1A_1$的方程是$ a_{3} h_{2} \mu_{2}=a_{2} h_{3} \mu_{3} $显然共轭重心K=$ \left(a_{1}^{2}: a_{2}^{2}: a_{3}^{2}\right) $满足此方程. |
|