Forgot password?
 Register account
View 849|Reply 3

[几何] 内切圆的同心圆 证三线共点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-7 23:37 |Read mode
ab71842dd42a283465d489b556b5c9ea14cebfc3.jpg
△ABC的内切圆切BC,CA,AB于D,E,F三点,另作一与内切圆的同心圆⊙R.ID,IE,IF的延长线交OR于D',E',F',则AD',BE',CF'三线共点.

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2022-5-4 12:25
回复 1# ellipse
QQ截图20220504121650.jpg
这个题我记得最早是在人教论坛maven网友解答的,后来他给我写了一个详细的证明:
可以证明$\triangle A_3B_1B_{12} \cong \triangle A_3B_2B_{21}$,因此$B_1B_{12} = B_2B_{21}$,同理可以证明$B_2B_{23} = B_3B_{32}, B_3B_{31} = B_1B_{13}$,设$(B_1B_{12}, B_2B_{23}, B_3B_{31}) = (p,q,r)$,显然$B_1B_{11} = B_2B_{22} = B_3B_{33} = R-t = h$(这里网友写的是$B_3B_{32}$,应该是他写错了),于是$B_1 = (-h,p,r), B_2 = (p,-h,q), B_3 = (r,q,-h)$。
于是$A_1B_1 = (0,-r,p), A_2B_2 = (q,0,-p), A_3B_3 = (-q,r,0)$,然而
$
\begin{bmatrix}
0 & -r & p\\
q & 0 & -p\\
-q & r & 0
\end{bmatrix}
= 0
$,所以$A_kB_k$共点。

这个证明我现在仍然看不懂,但知道他用的是重心坐标或者是三线坐标这样的方法。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2022-5-4 12:44
回复 2# abababa
我把他说的“可以证明”那个全等的部分证明一下:
因为$\angle IA_3B_{11}=\angle IA_3B_{22}$,而$\angle IB_{22}A_3=\angle IB_{11}A_3=90^{\circ}$,所以$\angle B_1IA_3=\angle B_2IA_3$,所以$\triangle IA_3B_1,\triangle IA_3B_2$关于$IA_3$对称,所以就有$\angle B_1A_3B_{22}=\angle B_2A_3B_{11}$,然后它们的补角也相等,就是$\angle B_1A_3B_{12}=\angle B_2A_3B_{21}$,再加上一个直角相等:$\angle B_{12}=\angle B_{21}$,再加上一个直角边相等:$B_1A_3=B_2A_3$,所以直角三角形$\triangle A_3B_1B_{12}\cong\triangle A_3B_2B_{21}$。

然后根据他说的$B_1B_{11}=R-t$,猜测$R$是$\odot I$的半径,而$t$是$\triangle A_1A_2A_3$的内切圆半径。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-4 15:34
笨方法:如图:
捕获.PNG
\begin{align*}
BD_2&=BD+DD_2\\
&=BD+\frac m{m+h_a}DH\\
&=BD+\frac m{m+h_a}(BH-BD)\\
&=\frac{h_aBD+mBH}{m+h_a},\\
CD_2&=CD-DD_2\\
&=CD-\frac m{m+h_a}DH\\
&=CD-\frac m{m+h_a}(CD-CH)\\
&=\frac{h_aCD+mCH}{m+h_a},\\
\frac{BD_2}{CD_2}&=\frac{h_aBD+mBH}{h_aCD+mCH}\\
&=\frac{\frac{2S}a\cdot\frac{a+c-b}2+mc\cos B}{\frac{2S}a\cdot\frac{a+b-c}2+mb\cos C}\\
&=\frac{2S(a+c-b)+m(a^2+c^2-b^2)}{2S(a+b-c)+m(a^2+b^2-c^2)},
\end{align*}
同理另外两式为此式的轮换式,故三式相乘为 `1`,即得共线。

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit